Flux-Florence-2 / app.py
gokaygokay's picture
Update app.py
f17a2ad verified
raw
history blame
6.38 kB
import spaces
import json
import subprocess
import os
import sys
def run_command(command):
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
output, error = process.communicate()
if process.returncode != 0:
print(f"Error executing command: {command}")
print(error.decode('utf-8'))
exit(1)
return output.decode('utf-8')
# Download CUDA installer
download_command = "wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
result = run_command(download_command)
if result is None:
print("Failed to download CUDA installer.")
exit(1)
# Run CUDA installer in silent mode
install_command = "sh cuda_12.2.0_535.54.03_linux.run --silent --toolkit --samples --override"
result = run_command(install_command)
if result is None:
print("Failed to run CUDA installer.")
exit(1)
print("CUDA installation process completed.")
def install_packages():
# Clone the repository with submodules
run_command("git clone --recurse-submodules https://github.com/abetlen/llama-cpp-python.git")
# Change to the cloned directory
os.chdir("llama-cpp-python")
# Checkout the specific commit in the llama.cpp submodule
os.chdir("vendor/llama.cpp")
run_command("git checkout 50e0535")
os.chdir("../..")
# Upgrade pip
run_command("pip install --upgrade pip")
# Install all optional dependencies with CUDA support
run_command('CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DCUDA_PATH=/usr/local/cuda-12.2 -DCUDAToolkit_ROOT=/usr/local/cuda-12.2 -DCUDAToolkit_INCLUDE_DIR=/usr/local/cuda-12/include -DCUDAToolkit_LIBRARY_DIR=/usr/local/cuda-12.2/lib64" FORCE_CMAKE=1 pip install -e .')
run_command("make clean && GGML_OPENBLAS=1 make -j")
# Reinstall the package with CUDA support
run_command('CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DCUDA_PATH=/usr/local/cuda-12.2 -DCUDAToolkit_ROOT=/usr/local/cuda-12.2 -DCUDAToolkit_INCLUDE_DIR=/usr/local/cuda-12/include -DCUDAToolkit_LIBRARY_DIR=/usr/local/cuda-12.2/lib64" FORCE_CMAKE=1 pip install -e .')
# Install llama-cpp-agent
run_command("pip install llama-cpp-agent")
run_command("export PYTHONPATH=$PYTHONPATH:$(pwd)")
print("Installation complete!")
try:
install_packages()
# Add a delay to allow for package registration
import time
time.sleep(5)
# Force Python to reload the site packages
import site
import importlib
importlib.reload(site)
# Now try to import the libraries
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
print("Libraries imported successfully!")
except Exception as e:
print(f"Installation failed or libraries couldn't be imported: {str(e)}")
sys.exit(1)
import gradio as gr
from huggingface_hub import hf_hub_download
hf_hub_download(
repo_id="MaziyarPanahi/Mistral-Nemo-Instruct-2407-GGUF",
filename="Mistral-Nemo-Instruct-2407.Q5_K_M.gguf",
local_dir="./models"
)
# Initialize LLM outside the respond function
llm = Llama(
model_path="models/Mistral-Nemo-Instruct-2407.Q5_K_M.gguf",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=32768,
)
provider = LlamaCppPythonProvider(llm)
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.MISTRAL
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
description = """<p><center>
<a href="https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407" target="_blank">[Instruct Model]</a>
<a href="https://huggingface.co/mistralai/Mistral-Nemo-Base-2407" target="_blank">[Base Model]</a>
<a href="https://huggingface.co/second-state/Mistral-Nemo-Instruct-2407-GGUF" target="_blank">[GGUF Version]</a>
</center></p>
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
title="Chat with Mistral-NeMo using llama.cpp",
description=description,
chatbot=gr.Chatbot(
scale=1,
likeable=False,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch(debug=True)