Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,10 +17,10 @@ if hf_api_key is None:
|
|
17 |
else:
|
18 |
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
19 |
|
20 |
-
#
|
21 |
-
API_URL = "https://api-inference.huggingface.co/models/
|
22 |
|
23 |
-
# Load the text generation model
|
24 |
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
|
25 |
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
|
26 |
text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name)
|
@@ -32,7 +32,7 @@ text_generator = pipeline("text-generation", model=text_model, tokenizer=text_to
|
|
32 |
def generate_image_from_text(translated_text):
|
33 |
try:
|
34 |
print(f"Generating image from translated text: {translated_text}")
|
35 |
-
response = requests.post(API_URL, headers=headers, json={"inputs": translated_text}, timeout=
|
36 |
|
37 |
if response.status_code != 200:
|
38 |
print(f"Error generating image: {response.text}")
|
@@ -51,8 +51,14 @@ def generate_image_from_text(translated_text):
|
|
51 |
def generate_short_paragraph_from_text(translated_text):
|
52 |
try:
|
53 |
print(f"Generating a short paragraph from translated text: {translated_text}")
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
print(f"Paragraph generation completed: {paragraph}")
|
57 |
return paragraph
|
58 |
except Exception as e:
|
@@ -65,8 +71,8 @@ def translate_generate_paragraph_and_image(tamil_text):
|
|
65 |
try:
|
66 |
print("Translating Tamil text to English...")
|
67 |
tokenizer.src_lang = "ta_IN"
|
68 |
-
inputs = tokenizer(tamil_text, return_tensors="pt", max_length=
|
69 |
-
translated_tokens = model.generate(**inputs,
|
70 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
71 |
print(f"Translation completed: {translated_text}")
|
72 |
except Exception as e:
|
@@ -84,7 +90,7 @@ def translate_generate_paragraph_and_image(tamil_text):
|
|
84 |
|
85 |
return translated_text, paragraph, image, None
|
86 |
|
87 |
-
# Gradio interface setup
|
88 |
iface = gr.Interface(
|
89 |
fn=translate_generate_paragraph_and_image,
|
90 |
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
|
@@ -94,7 +100,7 @@ iface = gr.Interface(
|
|
94 |
title="Tamil to English Translation, Short Paragraph Generation, and Image Creation",
|
95 |
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate a short paragraph, and create an image using the translated text.",
|
96 |
theme="default",
|
97 |
-
allow_flagging="never"
|
98 |
)
|
99 |
|
100 |
# Launch the interface
|
|
|
17 |
else:
|
18 |
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
19 |
|
20 |
+
# Use a faster text-to-image model for quicker generation
|
21 |
+
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
|
22 |
|
23 |
+
# Load the text generation model
|
24 |
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
|
25 |
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
|
26 |
text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name)
|
|
|
32 |
def generate_image_from_text(translated_text):
|
33 |
try:
|
34 |
print(f"Generating image from translated text: {translated_text}")
|
35 |
+
response = requests.post(API_URL, headers=headers, json={"inputs": translated_text}, timeout=20) # Increased timeout to 20 seconds
|
36 |
|
37 |
if response.status_code != 200:
|
38 |
print(f"Error generating image: {response.text}")
|
|
|
51 |
def generate_short_paragraph_from_text(translated_text):
|
52 |
try:
|
53 |
print(f"Generating a short paragraph from translated text: {translated_text}")
|
54 |
+
paragraph = text_generator(
|
55 |
+
translated_text,
|
56 |
+
max_length=80, # Reduced to 80 tokens
|
57 |
+
num_return_sequences=1,
|
58 |
+
temperature=0.7,
|
59 |
+
top_p=0.9,
|
60 |
+
no_repeat_ngram_size=3 # Prevent repetitive text
|
61 |
+
)[0]['generated_text']
|
62 |
print(f"Paragraph generation completed: {paragraph}")
|
63 |
return paragraph
|
64 |
except Exception as e:
|
|
|
71 |
try:
|
72 |
print("Translating Tamil text to English...")
|
73 |
tokenizer.src_lang = "ta_IN"
|
74 |
+
inputs = tokenizer(tamil_text, return_tensors="pt", max_length=40, truncation=True) # Limit length to 40 tokens
|
75 |
+
translated_tokens = model.generate(**inputs, max_length=50, num_beams=4, early_stopping=True) # Use beam search for faster output
|
76 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
77 |
print(f"Translation completed: {translated_text}")
|
78 |
except Exception as e:
|
|
|
90 |
|
91 |
return translated_text, paragraph, image, None
|
92 |
|
93 |
+
# Gradio interface setup
|
94 |
iface = gr.Interface(
|
95 |
fn=translate_generate_paragraph_and_image,
|
96 |
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
|
|
|
100 |
title="Tamil to English Translation, Short Paragraph Generation, and Image Creation",
|
101 |
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate a short paragraph, and create an image using the translated text.",
|
102 |
theme="default",
|
103 |
+
allow_flagging="never"
|
104 |
)
|
105 |
|
106 |
# Launch the interface
|