ghbGC commited on
Commit
74ac2c8
·
1 Parent(s): 445b665

Add application file

Browse files
Files changed (1) hide show
  1. app.py +84 -0
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
3
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
+ from llama_index.legacy.callbacks import CallbackManager
5
+ from llama_index.llms.openai_like import OpenAILike
6
+
7
+ # Create an instance of CallbackManager
8
+ callback_manager = CallbackManager()
9
+
10
+ api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
11
+ model = "internlm2.5-latest"
12
+ api_key = "eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiI1MDE0NTYyOSIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTczMTU5MTQ5MSwiY2xpZW50SWQiOiJlYm1ydm9kNnlvMG5semFlazF5cCIsInBob25lIjoiMTM3MzUzODgzNjEiLCJ1dWlkIjoiMDkyMzY2ZGYtMTg5NC00OWNhLTkzZjYtMWE3M2NmN2YxNDg1IiwiZW1haWwiOiIiLCJleHAiOjE3NDcxNDM0OTF9.VwCJJZNOFBG0q6tyjZemLptHOr1TaYS9-uHycVn-Dha8-iaa3GxJequpBnoevw4HG_Lah-HyFZkKS3stuIHa2w"
13
+
14
+ # api_base_url = "https://api.siliconflow.cn/v1"
15
+ # model = "internlm/internlm2_5-7b-chat"
16
+ # api_key = "请填写 API Key"
17
+
18
+ llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
19
+
20
+
21
+
22
+ st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
23
+ st.title("llama_index_demo")
24
+
25
+ # 初始化模型
26
+ @st.cache_resource
27
+ def init_models():
28
+ embed_model = HuggingFaceEmbedding(
29
+ # model_name="/root/model/paraphrase-multilingual-MiniLM-L12-v2"
30
+ model_name="/root/model/sentence-transformer"
31
+ )
32
+ Settings.embed_model = embed_model
33
+
34
+ #用初始化llm
35
+ Settings.llm = llm
36
+
37
+ documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
38
+ index = VectorStoreIndex.from_documents(documents)
39
+ query_engine = index.as_query_engine()
40
+
41
+ return query_engine
42
+
43
+ # 检查是否需要初始化模型
44
+ if 'query_engine' not in st.session_state:
45
+ st.session_state['query_engine'] = init_models()
46
+
47
+ def greet2(question):
48
+ response = st.session_state['query_engine'].query(question)
49
+ return response
50
+
51
+
52
+ # Store LLM generated responses
53
+ if "messages" not in st.session_state.keys():
54
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
55
+
56
+ # Display or clear chat messages
57
+ for message in st.session_state.messages:
58
+ with st.chat_message(message["role"]):
59
+ st.write(message["content"])
60
+
61
+ def clear_chat_history():
62
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
63
+
64
+ st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
65
+
66
+ # Function for generating LLaMA2 response
67
+ def generate_llama_index_response(prompt_input):
68
+ return greet2(prompt_input)
69
+
70
+ # User-provided prompt
71
+ if prompt := st.chat_input():
72
+ st.session_state.messages.append({"role": "user", "content": prompt})
73
+ with st.chat_message("user"):
74
+ st.write(prompt)
75
+
76
+ # Gegenerate_llama_index_response last message is not from assistant
77
+ if st.session_state.messages[-1]["role"] != "assistant":
78
+ with st.chat_message("assistant"):
79
+ with st.spinner("Thinking..."):
80
+ response = generate_llama_index_response(prompt)
81
+ placeholder = st.empty()
82
+ placeholder.markdown(response)
83
+ message = {"role": "assistant", "content": response}
84
+ st.session_state.messages.append(message)