File size: 4,416 Bytes
f5e3203
 
2a04008
f5e3203
 
2a04008
 
 
f5e3203
 
 
 
 
2a04008
f5e3203
ad5bf1a
f5e3203
 
 
 
 
 
 
2a04008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e3203
 
 
ad5bf1a
f5e3203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff97c38
2a04008
 
 
 
 
f5e3203
 
 
 
2a04008
 
f5e3203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from collections.abc import Sequence
import random
from typing import Optional

import gradio as gr
import spaces
import torch
import transformers

# If the watewrmark is not detected, consider the use case. Could be because of
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
# be another

_MODEL_IDENTIFIER = 'hf-internal-testing/tiny-random-gpt2'

_PROMPTS: tuple[str] = (
    'prompt 1',
    'prompt 2',
    'prompt 3',
)

_CORRECT_ANSWERS: dict[str, bool] = {}

_TORCH_DEVICE = (
    torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)

_WATERMARK_CONFIG = transformers.generation.SynthIDTextWatermarkingConfig(
    ngram_len=5,
    keys=[
        654,
        400,
        836,
        123,
        340,
        443,
        597,
        160,
        57,
        29,
        590,
        639,
        13,
        715,
        468,
        990,
        966,
        226,
        324,
        585,
        118,
        504,
        421,
        521,
        129,
        669,
        732,
        225,
        90,
        960,
    ],
    sampling_table_size=2**16,
    sampling_table_seed=0,
    context_history_size=1024,
)


tokenizer = transformers.AutoTokenizer.from_pretrained(_MODEL_IDENTIFIER)
tokenizer.pad_token_id = tokenizer.eos_token_id
model = transformers.AutoModelForCausalLM.from_pretrained(_MODEL_IDENTIFIER)
model.to(_TORCH_DEVICE)


@spaces.GPU
def generate_outputs(
  prompts: Sequence[str],
  watermarking_config: Optional[
      transformers.generation.SynthIDTextWatermarkingConfig
  ] = None,
) -> Sequence[str]:
  tokenized_prompts = tokenizer(prompts, return_tensors='pt').to(_TORCH_DEVICE)
  output_sequences = model.generate(
      **tokenized_prompts,
      watermarking_config=watermarking_config,
      do_sample=True,
      max_length=500,
      top_k=40,
  )
  return tokenizer.batch_decode(output_sequences)


with gr.Blocks() as demo:
  prompt_inputs = [
      gr.Textbox(value=prompt, lines=4, label='Prompt')
      for prompt in _PROMPTS
  ]
  generate_btn = gr.Button('Generate')

  with gr.Column(visible=False) as generations_col:
    generations_grp = gr.CheckboxGroup(
        label='All generations, in random order',
        info='Select the generations you think are watermarked!',
    )
    reveal_btn = gr.Button('Reveal', visible=False)

  with gr.Column(visible=False) as detections_col:
    revealed_grp = gr.CheckboxGroup(
        label='Ground truth for all generations',
        info=(
            'Watermarked generations are checked, and your selection are '
            'marked as correct or incorrect in the text.'
        ),
    )
    detect_btn = gr.Button('Detect', visible=False)

  def generate(*prompts):
    standard = generate_outputs(prompts=prompts)
    watermarked = generate_outputs(
        prompts=prompts,
        watermarking_config=_WATERMARK_CONFIG,
    )
    responses = standard + watermarked
    random.shuffle(responses)

    _CORRECT_ANSWERS.update({
        response: response in watermarked
        for response in responses
    })

    # Load model
    return {
        generate_btn: gr.Button(visible=False),
        generations_col: gr.Column(visible=True),
        generations_grp: gr.CheckboxGroup(
            responses,
        ),
        reveal_btn: gr.Button(visible=True),
    }

  generate_btn.click(
     generate,
     inputs=prompt_inputs,
     outputs=[generate_btn, generations_col, generations_grp, reveal_btn]
  )

  def reveal(user_selections: list[str]):
    choices: list[str] = []
    value: list[str] = []

    for response, is_watermarked in _CORRECT_ANSWERS.items():
      if is_watermarked and response in user_selections:
        choice = f'Correct! {response}'
      elif not is_watermarked and response not in user_selections:
        choice = f'Correct! {response}'
      else:
        choice = f'Incorrect. {response}'

      choices.append(choice)
      if is_watermarked:
        value.append(choice)

    return {
      reveal_btn: gr.Button(visible=False),
      detections_col: gr.Column(visible=True),
      revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
      detect_btn: gr.Button(visible=True),
    }

  reveal_btn.click(
    reveal,
    inputs=generations_grp,
    outputs=[
        reveal_btn,
        detections_col,
        revealed_grp,
        detect_btn
    ],
  )

if __name__ == '__main__':
  demo.launch()