Spaces:
Running
on
L40S
Running
on
L40S
File size: 4,100 Bytes
f5e3203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
from collections.abc import Sequence
import random
import gradio as gr
import immutabledict
import spaces
import torch
#### Version 1: Baseline
# Step 1: Select and load your model
# Step 2: Load the test dataset (4-5 examples)
# Step 3: Run generation with and wihtout watermarking, display the outputs
# Step 4: User clicks the reveal button to see the watermarked vs not gens
#### Version 2: Gamification
# Stesp 1-3 the same
# Step 4: User marks specific generations as watermarked
# Step 5: User clicks the reveal button to see the watermarked vs not gens
# If the watewrmark is not detected, consider the use case. Could be because of
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
# be another
GEMMA_2B = 'google/gemma-2b'
PROMPTS: tuple[str] = (
'prompt 1',
'prompt 2',
'prompt 3',
'prompt 4',
)
WATERMARKING_CONFIG = immutabledict.immutabledict({
"ngram_len": 5,
"keys": [
654,
400,
836,
123,
340,
443,
597,
160,
57,
29,
590,
639,
13,
715,
468,
990,
966,
226,
324,
585,
118,
504,
421,
521,
129,
669,
732,
225,
90,
960,
],
"sampling_table_size": 2**16,
"sampling_table_seed": 0,
"context_history_size": 1024,
"device": (
torch.device("cuda:0")
if torch.cuda.is_available()
else torch.device("cpu")
),
})
_CORRECT_ANSWERS: dict[str, bool] = {}
with gr.Blocks() as demo:
prompt_inputs = [
gr.Textbox(value=prompt, lines=4, label='Prompt')
for prompt in PROMPTS
]
generate_btn = gr.Button('Generate')
with gr.Column(visible=False) as generations_col:
generations_grp = gr.CheckboxGroup(
label='All generations, in random order',
info='Select the generations you think are watermarked!',
)
reveal_btn = gr.Button('Reveal', visible=False)
with gr.Column(visible=False) as detections_col:
revealed_grp = gr.CheckboxGroup(
label='Ground truth for all generations',
info=(
'Watermarked generations are checked, and your selection are '
'marked as correct or incorrect in the text.'
),
)
detect_btn = gr.Button('Detect', visible=False)
def generate(*prompts) -> Sequence[str]:
standard = [f'{prompt} response' for prompt in prompts]
watermarked = [f'{prompt} watermarked response' for prompt in prompts]
responses = standard + watermarked
random.shuffle(responses)
_CORRECT_ANSWERS.update({
response: response in watermarked
for response in responses
})
# Load model
return {
generate_btn: gr.Button(visible=False),
generations_col: gr.Column(visible=True),
generations_grp: gr.CheckboxGroup(
responses,
),
reveal_btn: gr.Button(visible=True),
}
generate_btn.click(
generate,
inputs=prompt_inputs,
outputs=[generate_btn, generations_col, generations_grp, reveal_btn]
)
def reveal(user_selections: list[str]):
choices: list[str] = []
value: list[str] = []
for response, is_watermarked in _CORRECT_ANSWERS.items():
if is_watermarked and response in user_selections:
choice = f'Correct! {response}'
elif not is_watermarked and response not in user_selections:
choice = f'Correct! {response}'
else:
choice = f'Incorrect. {response}'
choices.append(choice)
if is_watermarked:
value.append(choice)
return {
reveal_btn: gr.Button(visible=False),
detections_col: gr.Column(visible=True),
revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
detect_btn: gr.Button(visible=True),
}
reveal_btn.click(
reveal,
inputs=generations_grp,
outputs=[
reveal_btn,
detections_col,
revealed_grp,
detect_btn
],
)
if __name__ == '__main__':
demo.launch()
|