Spaces:
Running
Running
File size: 14,318 Bytes
2a6a1b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import time
import numpy as np
import pandas as pd
import streamlit as st
from streamlit_option_menu import option_menu
from streamlit_extras.add_vertical_space import add_vertical_space
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.chains.question_answering import load_qa_chain
from selenium import webdriver
from selenium.webdriver.common.by import By
import warnings
warnings.filterwarnings('ignore')
def streamlit_config():
# page configuration
st.set_page_config(page_title='Resume Analyzer AI', layout="wide")
# page header transparent color
page_background_color = """
<style>
[data-testid="stHeader"]
{
background: rgba(0,0,0,0);
}
</style>
"""
st.markdown(page_background_color, unsafe_allow_html=True)
# title and position
st.markdown(f'<h1 style="text-align: center;">AI-Powered Resume Analyzer and <br> LinkedIn Scraper with Selenium</h1>',
unsafe_allow_html=True)
class resume_analyzer:
def pdf_to_chunks(pdf):
# read pdf and it returns memory address
pdf_reader = PdfReader(pdf)
# extrat text from each page separately
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# Split the long text into small chunks.
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=700,
chunk_overlap=200,
length_function=len)
chunks = text_splitter.split_text(text=text)
return chunks
def resume_summary(query_with_chunks):
query = f''' need to detailed summarization of below resume and finally conclude them
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_strength(query_with_chunks):
query = f'''need to detailed analysis and explain of the strength of below resume and finally conclude them
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_weakness(query_with_chunks):
query = f'''need to detailed analysis and explain of the weakness of below resume and how to improve make a better resume.
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def job_title_suggestion(query_with_chunks):
query = f''' what are the job roles i apply to likedin based on below?
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def openai(openai_api_key, chunks, analyze):
# Using OpenAI service for embedding
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Facebook AI Similarity Serach library help us to convert text data to numerical vector
vectorstores = FAISS.from_texts(chunks, embedding=embeddings)
# compares the query and chunks, enabling the selection of the top 'K' most similar chunks based on their similarity scores.
docs = vectorstores.similarity_search(query=analyze, k=3)
# creates an OpenAI object, using the ChatGPT 3.5 Turbo model
llm = ChatOpenAI(model='gpt-3.5-turbo', api_key=openai_api_key)
# question-answering (QA) pipeline, making use of the load_qa_chain function
chain = load_qa_chain(llm=llm, chain_type='stuff')
response = chain.run(input_documents=docs, question=analyze)
return response
class linkedin_scrap:
def linkedin_open_scrolldown(driver, user_job_title):
b = []
for i in user_job_title:
x = i.split()
y = '%20'.join(x)
b.append(y)
job_title = '%2C%20'.join(b)
link = f"https://in.linkedin.com/jobs/search?keywords={job_title}&location=India&locationId=&geoId=102713980&f_TPR=r604800&position=1&pageNum=0"
driver.get(link)
driver.implicitly_wait(10)
for i in range(0,3):
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(5)
try:
x = driver.find_element(by=By.CSS_SELECTOR, value="button[aria-label='See more jobs']").click()
time.sleep(3)
except:
pass
def company_name(driver):
company = driver.find_elements(by=By.CSS_SELECTOR, value='h4[class="base-search-card__subtitle"]')
company_name = []
for i in company:
company_name.append(i.text)
return company_name
def company_location(driver):
location = driver.find_elements(by=By.CSS_SELECTOR, value='span[class="job-search-card__location"]')
company_location = []
for i in location:
company_location.append(i.text)
return company_location
def job_title(driver):
title = driver.find_elements(by=By.CSS_SELECTOR, value='h3[class="base-search-card__title"]')
job_title = []
for i in title:
job_title.append(i.text)
return job_title
def job_url(driver):
url = driver.find_elements(by=By.XPATH, value='//a[contains(@href, "/jobs/")]')
url_list = [i.get_attribute('href') for i in url]
job_url = []
for url in url_list:
job_url.append(url)
return job_url
def job_title_filter(x, user_job_title):
s = [i.lower() for i in user_job_title]
suggestion = []
for i in s:
suggestion.extend(i.split())
s = x.split()
a = [i.lower() for i in s]
intersection = list(set(suggestion).intersection(set(a)))
return x if len(intersection) > 1 else np.nan
def get_description(driver, link):
driver.get(link)
time.sleep(3)
driver.find_element(by=By.CSS_SELECTOR,
value='button[data-tracking-control-name="public_jobs_show-more-html-btn"]').click()
time.sleep(2)
description = driver.find_elements(by=By.CSS_SELECTOR,
value='div[class="show-more-less-html__markup relative overflow-hidden"]')
driver.implicitly_wait(4)
for j in description:
return j.text
def data_scrap(driver, user_job_title):
# combine the all data to single dataframe
df = pd.DataFrame(linkedin_scrap.company_name(driver), columns=['Company Name'])
df['Job Title'] = pd.DataFrame(linkedin_scrap.job_title(driver))
df['Location'] = pd.DataFrame(linkedin_scrap.company_location(driver))
df['Website URL'] = pd.DataFrame(linkedin_scrap.job_url(driver))
# job title filter based on user input
df['Job Title'] = df['Job Title'].apply(lambda x: linkedin_scrap.job_title_filter(x, user_job_title))
df = df.dropna()
df.reset_index(drop=True, inplace=True)
df = df.iloc[:10, :]
# make a list after filter
website_url = df['Website URL'].tolist()
# add job description in df
job_description = []
for i in range(0, len(website_url)):
link = website_url[i]
data = linkedin_scrap.get_description(driver, link)
if data is not None and len(data.strip()) > 0:
job_description.append(data)
else:
job_description.append('Description Not Available')
df['Job Description'] = pd.DataFrame(job_description, columns=['Description'])
df = df.dropna()
df.reset_index(drop=True, inplace=True)
return df
def main(user_job_title):
driver = webdriver.Chrome()
driver.maximize_window()
linkedin_scrap.linkedin_open_scrolldown(driver, user_job_title)
final_df = linkedin_scrap.data_scrap(driver, user_job_title)
driver.quit()
return final_df
streamlit_config()
add_vertical_space(1)
# sidebar
with st.sidebar:
add_vertical_space(3)
option = option_menu(menu_title='', options=['Summary', 'Strength', 'Weakness', 'Job Titles', 'Linkedin Jobs', 'Exit'],
icons=['house-fill', 'database-fill', 'pass-fill', 'list-ul', 'linkedin', 'sign-turn-right-fill'])
if option == 'Summary':
# file upload
pdf = st.file_uploader(label='', type='pdf')
openai_api_key = st.text_input(label='OpenAI API Key', type='password')
try:
if pdf is not None and openai_api_key is not None:
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary = resume_analyzer.resume_summary(query_with_chunks=pdf_chunks)
result_summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary)
st.subheader('Summary:')
st.write(result_summary)
except Exception as e:
col1, col2 = st.columns(2)
with col1:
st.warning(e)
elif option == 'Strength':
# file upload
pdf = st.file_uploader(label='', type='pdf')
openai_api_key = st.text_input(label='OpenAI API Key', type='password')
try:
if pdf is not None and openai_api_key is not None:
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
# Resume summary
summary = resume_analyzer.resume_summary(query_with_chunks=pdf_chunks)
result_summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary)
strength = resume_analyzer.resume_strength(query_with_chunks=result_summary)
result_strength = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=strength)
st.subheader('Strength:')
st.write(result_strength)
except Exception as e:
col1, col2 = st.columns(2)
with col1:
st.warning(e)
elif option == 'Weakness':
# file upload
pdf = st.file_uploader(label='', type='pdf')
openai_api_key = st.text_input(label='OpenAI API Key', type='password')
try:
if pdf is not None and openai_api_key is not None:
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
# Resume summary
summary = resume_analyzer.resume_summary(query_with_chunks=pdf_chunks)
result_summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary)
weakness = resume_analyzer.resume_weakness(query_with_chunks=result_summary)
result_weakness = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=weakness)
st.subheader('Weakness:')
st.write(result_weakness)
except Exception as e:
col1, col2 = st.columns(2)
with col1:
st.warning(e)
elif option == 'Job Titles':
# file upload
pdf = st.file_uploader(label='', type='pdf')
openai_api_key = st.text_input(label='OpenAI API Key', type='password')
try:
if pdf is not None and openai_api_key is not None:
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
# Resume summary
summary = resume_analyzer.resume_summary(query_with_chunks=pdf_chunks)
result_summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary)
job_suggestion = resume_analyzer.job_title_suggestion(query_with_chunks=result_summary)
result_suggestion = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=job_suggestion)
st.subheader('Suggestion: ')
st.write(result_suggestion)
except Exception as e:
col1, col2 = st.columns(2)
with col1:
st.warning(e)
elif option == 'Linkedin Jobs':
try:
# get user input of job title
user_input_job_title = st.text_input(label='Enter Job Titles (with comma separated):')
submit = st.button('Submit')
if submit and len(user_input_job_title) > 0:
user_job_title = user_input_job_title.split(',')
df = linkedin_scrap.main(user_job_title)
l = len(df['Company Name'])
for i in range(0, l):
st.write(f"Company Name : {df.iloc[i,0]}")
st.write(f"Job Title : {df.iloc[i,1]}")
st.write(f"Location : {df.iloc[i,2]}")
st.write(f"Website URL : {df.iloc[i,3]}")
with st.expander(label='Job Desription'):
st.write(df.iloc[i, 4])
st.write('')
st.write('')
elif submit and len(user_input_job_title) == 0:
col1, col2 = st.columns(2)
with col1:
st.info('Please Enter the Job Titles')
except:
st.write('')
st.info("This feature is currently not working in the deployed Streamlit application due to a 'selenium.common.exceptions.WebDriverException' error.")
st.write('')
st.write(
"Please use the local Streamlit application for a smooth experience: [http://localhost:8501](http://localhost:8501)")
elif option == 'Exit':
add_vertical_space(3)
col1, col2, col3 = st.columns([0.3,0.4,0.3])
with col2:
st.success('Thank you for your time. Exiting the application')
st.balloons()
|