File size: 21,353 Bytes
ca56e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import traceback
from abc import ABC
from typing import (
    Optional,
    List,
    Union,
    Tuple,
    Dict,
    Iterator,
    Any,
)

import torch
from fastapi.responses import JSONResponse
from loguru import logger
from openai.types.chat import (
    ChatCompletionMessage,
    ChatCompletion,
    ChatCompletionChunk,
)
from openai.types.chat import ChatCompletionMessageParam
from openai.types.chat.chat_completion import Choice
from openai.types.chat.chat_completion_chunk import Choice as ChunkChoice
from openai.types.chat.chat_completion_chunk import (
    ChoiceDelta,
    ChoiceDeltaFunctionCall,
    ChoiceDeltaToolCall,
)
from openai.types.chat.chat_completion_message import FunctionCall
from openai.types.chat.chat_completion_message_tool_call import ChatCompletionMessageToolCall
from openai.types.completion import Completion
from openai.types.completion_choice import CompletionChoice, Logprobs
from openai.types.completion_usage import CompletionUsage
from transformers import PreTrainedModel, PreTrainedTokenizer

from api.adapter import get_prompt_adapter
from api.generation import (
    build_baichuan_chat_input,
    check_is_baichuan,
    generate_stream_chatglm,
    check_is_chatglm,
    generate_stream_chatglm_v3,
    build_qwen_chat_input,
    check_is_qwen,
    generate_stream,
    build_xverse_chat_input,
    check_is_xverse,
)
from api.generation.utils import get_context_length
from api.utils.compat import model_parse
from api.utils.constants import ErrorCode
from api.utils.request import create_error_response

server_error_msg = (
    "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
)


class DefaultEngine(ABC):
    """ 基于原生 transformers 实现的模型引擎 """
    def __init__(
        self,
        model: PreTrainedModel,
        tokenizer: PreTrainedTokenizer,
        device: Union[str, torch.device],
        model_name: str,
        context_len: Optional[int] = None,
        prompt_name: Optional[str] = None,
        use_streamer_v2: Optional[bool] = False,
    ):
        """
        Initialize the Default class.

        Args:
            model (PreTrainedModel): The pre-trained model.
            tokenizer (PreTrainedTokenizer): The tokenizer for the model.
            device (Union[str, torch.device]): The device to use for inference.
            model_name (str): The name of the model.
            context_len (Optional[int], optional): The length of the context. Defaults to None.
            prompt_name (Optional[str], optional): The name of the prompt. Defaults to None.
            use_streamer_v2 (Optional[bool], optional): Whether to use Streamer V2. Defaults to False.
        """
        self.model = model
        self.tokenizer = tokenizer
        self.device = model.device if hasattr(model, "device") else device

        self.model_name = model_name.lower()
        self.prompt_name = prompt_name.lower() if prompt_name is not None else None
        self.context_len = context_len
        self.use_streamer_v2 = use_streamer_v2

        self.prompt_adapter = get_prompt_adapter(self.model_name, prompt_name=self.prompt_name)

        self._prepare_for_generate()
        self._fix_tokenizer()

    def _prepare_for_generate(self):
        """
        Prepare the object for text generation.

        1. Sets the appropriate generate stream function based on the model name and type.
        2. Updates the context length if necessary.
        3. Checks and constructs the prompt.
        4. Sets the context length if it is not already set.
        """
        self.generate_stream_func = generate_stream
        if "chatglm3" in self.model_name:
            self.generate_stream_func = generate_stream_chatglm_v3
            self.use_streamer_v2 = False
        elif check_is_chatglm(self.model):
            self.generate_stream_func = generate_stream_chatglm
        elif check_is_qwen(self.model):
            self.context_len = 8192 if self.context_len is None else self.context_len

        self._check_construct_prompt()

        if self.context_len is None:
            self.context_len = get_context_length(self.model.config)

    def _check_construct_prompt(self):
        """ Check whether to need to construct prompts or inputs. """
        self.construct_prompt = self.prompt_name is not None
        if "chatglm3" in self.model_name:
            logger.info("Using ChatGLM3 Model for Chat!")
        elif check_is_baichuan(self.model):
            logger.info("Using Baichuan Model for Chat!")
        elif check_is_qwen(self.model):
            logger.info("Using Qwen Model for Chat!")
        elif check_is_xverse(self.model):
            logger.info("Using Xverse Model for Chat!")
        else:
            self.construct_prompt = True

    def _fix_tokenizer(self):
        """ 
        Fix the tokenizer by adding the end-of-sequence (eos) token 
        and the padding (pad) token if they are missing.
        """
        if self.tokenizer.eos_token_id is None:
            self.tokenizer.eos_token = "<|endoftext|>"
            logger.info(f"Add eos token: {self.tokenizer.eos_token}")

        if self.tokenizer.pad_token_id is None:
            if self.tokenizer.unk_token_id is not None:
                self.tokenizer.pad_token = self.tokenizer.unk_token
            else:
                self.tokenizer.pad_token = self.tokenizer.eos_token
            logger.info(f"Add pad token: {self.tokenizer.pad_token}")

    def convert_to_inputs(
        self,
        prompt_or_messages: Union[List[ChatCompletionMessageParam], str],
        infilling: Optional[bool] = False,
        suffix_first: Optional[bool] = False,
        **kwargs,
    ) -> Tuple[Union[List[int], Dict[str, Any]], Union[List[ChatCompletionMessageParam], str]]:
        """
        Convert the prompt or messages into input format for the model.

        Args:
            prompt_or_messages: The prompt or messages to be converted.
            infilling: Whether to perform infilling.
            suffix_first: Whether to append the suffix first.
            **kwargs: Additional keyword arguments.

        Returns:
            Tuple containing the converted inputs and the prompt or messages.
        """
        # for completion
        if isinstance(prompt_or_messages, str):
            if infilling:
                inputs = self.tokenizer(
                    prompt_or_messages, suffix_first=suffix_first,
                ).input_ids
            elif check_is_qwen(self.model):
                inputs = self.tokenizer(
                    prompt_or_messages, allowed_special="all", disallowed_special=()
                ).input_ids
            elif check_is_chatglm(self.model):
                inputs = self.tokenizer([prompt_or_messages], return_tensors="pt")
            else:
                inputs = self.tokenizer(prompt_or_messages).input_ids

            if isinstance(inputs, list):
                max_src_len = self.context_len - kwargs.get("max_tokens", 256) - 1
                inputs = inputs[-max_src_len:]

        else:
            inputs, prompt_or_messages = self.apply_chat_template(prompt_or_messages, **kwargs)
        return inputs, prompt_or_messages

    def apply_chat_template(
        self,
        messages: List[ChatCompletionMessageParam],
        max_new_tokens: Optional[int] = 256,
        functions: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
        tools: Optional[List[Dict[str, Any]]] = None,
        **kwargs,
    ) -> Tuple[Union[List[int], Dict[str, Any]], Optional[str]]:
        """
        Apply chat template to generate model inputs and prompt.

        Args:
            messages (List[ChatCompletionMessageParam]): List of chat completion message parameters.
            max_new_tokens (Optional[int], optional): Maximum number of new tokens to generate. Defaults to 256.
            functions (Optional[Union[Dict[str, Any], List[Dict[str, Any]]]], optional): Functions to apply to the messages. Defaults to None.
            tools (Optional[List[Dict[str, Any]]], optional): Tools to apply to the messages. Defaults to None.
            **kwargs: Additional keyword arguments.

        Returns:
            Tuple[Union[List[int], Dict[str, Any]], Union[str, None]]: Tuple containing the generated inputs and prompt.
        """
        if self.prompt_adapter.function_call_available:
            messages = self.prompt_adapter.postprocess_messages(
                messages, functions, tools=tools,
            )
            if functions or tools:
                logger.debug(f"==== Messages with tools ====\n{messages}")

        if self.construct_prompt:
            prompt = self.prompt_adapter.apply_chat_template(messages)
            if check_is_qwen(self.model):
                inputs = self.tokenizer(prompt, allowed_special="all", disallowed_special=()).input_ids
            elif check_is_chatglm(self.model):
                inputs = self.tokenizer([prompt], return_tensors="pt")
            else:
                inputs = self.tokenizer(prompt).input_ids

            if isinstance(inputs, list):
                max_src_len = self.context_len - max_new_tokens - 1
                inputs = inputs[-max_src_len:]
            return inputs, prompt
        else:
            inputs = self.build_chat_inputs(
                messages, max_new_tokens, functions, tools, **kwargs
            )
        return inputs, None

    def build_chat_inputs(
        self,
        messages: List[ChatCompletionMessageParam],
        max_new_tokens: Optional[int] = 256,
        functions: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
        tools: Optional[List[Dict[str, Any]]] = None,
        **kwargs: Any,
    ) -> List[int]:
        if "chatglm3" in self.model_name:
            query, role = messages[-1]["content"], messages[-1]["role"]
            inputs = self.tokenizer.build_chat_input(query, history=messages[:-1], role=role)
        elif check_is_baichuan(self.model):
            inputs = build_baichuan_chat_input(
                self.tokenizer, messages, self.context_len, max_new_tokens
            )
        elif check_is_qwen(self.model):
            inputs = build_qwen_chat_input(
                self.tokenizer, messages, self.context_len, max_new_tokens, functions, tools,
            )
        elif check_is_xverse(self.model):
            inputs = build_xverse_chat_input(
                self.tokenizer, messages, self.context_len, max_new_tokens
            )
        else:
            raise NotImplementedError
        return inputs

    def _generate(self, params: Dict[str, Any]) -> Iterator:
        """
        Generates text based on the given parameters.

        Args:
            params (Dict[str, Any]): A dictionary containing the parameters for text generation.

        Yields:
            Iterator: A dictionary containing the generated text and error code.
        """
        prompt_or_messages = params.get("prompt_or_messages")
        inputs, prompt = self.convert_to_inputs(
            prompt_or_messages,
            infilling=params.get("infilling", False),
            suffix_first=params.get("suffix_first", False),
            max_new_tokens=params.get("max_tokens", 256),
            functions=params.get("functions"),
            tools=params.get("tools"),
        )
        params.update(dict(inputs=inputs, prompt=prompt))

        try:
            for output in self.generate_stream_func(self.model, self.tokenizer, params):
                output["error_code"] = 0
                yield output

        except torch.cuda.OutOfMemoryError as e:
            yield {
                "text": f"{server_error_msg}\n\n({e})",
                "error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
            }

        except (ValueError, RuntimeError) as e:
            traceback.print_exc()
            yield {
                "text": f"{server_error_msg}\n\n({e})",
                "error_code": ErrorCode.INTERNAL_ERROR,
            }

    def _create_completion_stream(self, params: Dict[str, Any]) -> Iterator:
        """
        Generates a stream of completions based on the given parameters.

        Args:
            params (Dict[str, Any]): The parameters for generating completions.

        Yields:
            Iterator: A stream of completion objects.
        """
        for output in self._generate(params):
            if output["error_code"] != 0:
                yield output
                return

            logprobs = None
            if params.get("logprobs") and output["logprobs"]:
                logprobs = model_parse(Logprobs, output["logprobs"])

            choice = CompletionChoice(
                index=0,
                text=output["delta"],
                finish_reason="stop",
                logprobs=logprobs,
            )
            yield Completion(
                id=output["id"],
                choices=[choice],
                created=output["created"],
                model=output["model"],
                object="text_completion",
            )

    def _create_completion(self, params: Dict[str, Any]) -> Union[Completion, JSONResponse]:
        """
        Creates a completion based on the given parameters.

        Args:
            params (Dict[str, Any]): The parameters for creating the completion.

        Returns:
            Completion: The generated completion object.
        """
        last_output = None
        for output in self._generate(params):
            last_output = output

        if last_output["error_code"] != 0:
            return create_error_response(last_output["error_code"], last_output["text"])

        logprobs = None
        if params.get("logprobs") and last_output["logprobs"]:
            logprobs = model_parse(Logprobs, last_output["logprobs"])

        choice = CompletionChoice(
            index=0,
            text=last_output["text"],
            finish_reason="stop",
            logprobs=logprobs,
        )
        usage = model_parse(CompletionUsage, last_output["usage"])
        return Completion(
            id=last_output["id"],
            choices=[choice],
            created=last_output["created"],
            model=last_output["model"],
            object="text_completion",
            usage=usage,
        )

    def _create_chat_completion_stream(self, params: Dict[str, Any]) -> Iterator:
        """
        Creates a chat completion stream.

        Args:
            params (Dict[str, Any]): The parameters for generating the chat completion.

        Yields:
            Dict[str, Any]: The output of the chat completion stream.
        """
        _id, _created, _model = None, None, None
        has_function_call = False
        for i, output in enumerate(self._generate(params)):
            if output["error_code"] != 0:
                yield output
                return

            _id, _created, _model = output["id"], output["created"], output["model"]
            if i == 0:
                choice = ChunkChoice(
                    index=0,
                    delta=ChoiceDelta(role="assistant", content=""),
                    finish_reason=None,
                    logprobs=None,
                )
                yield ChatCompletionChunk(
                    id=f"chat{_id}",
                    choices=[choice],
                    created=_created,
                    model=_model,
                    object="chat.completion.chunk",
                )

            finish_reason = output["finish_reason"]
            if len(output["delta"]) == 0 and finish_reason != "function_call":
                continue

            function_call = None
            if finish_reason == "function_call":
                try:
                    _, function_call = self.prompt_adapter.parse_assistant_response(
                        output["text"], params.get("functions"), params.get("tools"),
                    )
                except Exception as e:
                    traceback.print_exc()
                    logger.warning("Failed to parse tool call")

            if isinstance(function_call, dict) and "arguments" in function_call:
                has_function_call = True
                function_call = ChoiceDeltaFunctionCall(**function_call)
                delta = ChoiceDelta(
                    content=output["delta"],
                    function_call=function_call
                )
            elif isinstance(function_call, dict) and "function" in function_call:
                has_function_call = True
                finish_reason = "tool_calls"
                function_call["index"] = 0
                tool_calls = [model_parse(ChoiceDeltaToolCall, function_call)]
                delta = ChoiceDelta(
                    content=output["delta"],
                    tool_calls=tool_calls,
                )
            else:
                delta = ChoiceDelta(content=output["delta"])

            choice = ChunkChoice(
                index=0,
                delta=delta,
                finish_reason=finish_reason,
                logprobs=None,
            )
            yield ChatCompletionChunk(
                id=f"chat{_id}",
                choices=[choice],
                created=_created,
                model=_model,
                object="chat.completion.chunk",
            )

        if not has_function_call:
            choice = ChunkChoice(
                index=0,
                delta=ChoiceDelta(),
                finish_reason="stop",
                logprobs=None,
            )
            yield ChatCompletionChunk(
                id=f"chat{_id}",
                choices=[choice],
                created=_created,
                model=_model,
                object="chat.completion.chunk",
            )

    def _create_chat_completion(self, params: Dict[str, Any]) -> Union[ChatCompletion, JSONResponse]:
        """
        Creates a chat completion based on the given parameters.

        Args:
            params (Dict[str, Any]): The parameters for generating the chat completion.

        Returns:
            ChatCompletion: The generated chat completion.
        """
        last_output = None
        for output in self._generate(params):
            last_output = output

        if last_output["error_code"] != 0:
            return create_error_response(last_output["error_code"], last_output["text"])

        function_call, finish_reason = None, "stop"
        if params.get("functions") or params.get("tools"):
            try:
                res, function_call = self.prompt_adapter.parse_assistant_response(
                    last_output["text"], params.get("functions"), params.get("tools"),
                )
                last_output["text"] = res
            except Exception as e:
                traceback.print_exc()
                logger.warning("Failed to parse tool call")

        if isinstance(function_call, dict) and "arguments" in function_call:
            finish_reason = "function_call"
            function_call = FunctionCall(**function_call)
            message = ChatCompletionMessage(
                role="assistant",
                content=last_output["text"],
                function_call=function_call,
            )
        elif isinstance(function_call, dict) and "function" in function_call:
            finish_reason = "tool_calls"
            tool_calls = [model_parse(ChatCompletionMessageToolCall, function_call)]
            message = ChatCompletionMessage(
                role="assistant",
                content=last_output["text"],
                tool_calls=tool_calls,
            )
        else:
            message = ChatCompletionMessage(
                role="assistant",
                content=last_output["text"].strip(),
            )

        choice = Choice(
            index=0,
            message=message,
            finish_reason=finish_reason,
            logprobs=None,
        )
        usage = model_parse(CompletionUsage, last_output["usage"])
        return ChatCompletion(
            id=f"chat{last_output['id']}",
            choices=[choice],
            created=last_output["created"],
            model=last_output["model"],
            object="chat.completion",
            usage=usage,
        )

    def create_completion(
        self,
        params: Optional[Dict[str, Any]] = None,
        **kwargs: Any,
    ) -> Union[Iterator, Completion]:
        params = params or {}
        params.update(kwargs)
        return (
            self._create_completion_stream(params)
            if params.get("stream", False)
            else self._create_completion(params)
        )

    def create_chat_completion(
        self,
        params: Optional[Dict[str, Any]] = None,
        **kwargs,
    ) -> Union[Iterator, ChatCompletion]:
        params = params or {}
        params.update(kwargs)
        return (
            self._create_chat_completion_stream(params)
            if params.get("stream", False)
            else self._create_chat_completion(params)
        )

    @property
    def stop(self):
        """
        Gets the stop property of the prompt adapter.

        Returns:
            The stop property of the prompt adapter, or None if it does not exist.
        """
        return self.prompt_adapter.stop if hasattr(self.prompt_adapter, "stop") else None