File size: 5,020 Bytes
ca56e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import time
import uuid
from functools import partial
from typing import (
    Dict,
    Any,
    AsyncIterator,
)

import anyio
from fastapi import APIRouter, Depends
from fastapi import HTTPException, Request
from loguru import logger
from openai.types.chat import (
    ChatCompletionMessage,
    ChatCompletion,
    ChatCompletionChunk,
)
from openai.types.chat.chat_completion import Choice
from openai.types.chat.chat_completion_chunk import Choice as ChunkChoice
from openai.types.chat.chat_completion_chunk import ChoiceDelta
from openai.types.completion_usage import CompletionUsage
from sse_starlette import EventSourceResponse
from text_generation.types import StreamResponse, Response

from api.core.tgi import TGIEngine
from api.models import GENERATE_ENGINE
from api.utils.compat import model_dump
from api.utils.protocol import Role, ChatCompletionCreateParams
from api.utils.request import (
    check_api_key,
    handle_request,
    get_event_publisher,
)

chat_router = APIRouter(prefix="/chat")


def get_engine():
    yield GENERATE_ENGINE


@chat_router.post("/completions", dependencies=[Depends(check_api_key)])
async def create_chat_completion(
    request: ChatCompletionCreateParams,
    raw_request: Request,
    engine: TGIEngine = Depends(get_engine),
):
    if (not request.messages) or request.messages[-1]["role"] == Role.ASSISTANT:
        raise HTTPException(status_code=400, detail="Invalid request")

    request = await handle_request(request, engine.prompt_adapter.stop)
    request.max_tokens = request.max_tokens or 512

    prompt = engine.apply_chat_template(request.messages)
    include = {
        "temperature",
        "best_of",
        "repetition_penalty",
        "typical_p",
        "watermark",
    }
    params = model_dump(request, include=include)
    params.update(
        dict(
            prompt=prompt,
            do_sample=request.temperature > 1e-5,
            max_new_tokens=request.max_tokens,
            stop_sequences=request.stop,
            top_p=request.top_p if request.top_p < 1.0 else 0.99,
        )
    )
    logger.debug(f"==== request ====\n{params}")

    request_id: str = f"chatcmpl-{str(uuid.uuid4())}"

    if request.stream:
        generator = engine.generate_stream(**params)
        iterator = create_chat_completion_stream(generator, params, request_id)
        send_chan, recv_chan = anyio.create_memory_object_stream(10)
        return EventSourceResponse(
            recv_chan,
            data_sender_callable=partial(
                get_event_publisher,
                request=raw_request,
                inner_send_chan=send_chan,
                iterator=iterator,
            ),
        )

    response: Response = await engine.generate(**params)
    finish_reason = response.details.finish_reason.value
    finish_reason = "length" if finish_reason == "length" else "stop"

    message = ChatCompletionMessage(role="assistant", content=response.generated_text)

    choice = Choice(
        index=0,
        message=message,
        finish_reason=finish_reason,
        logprobs=None,
    )

    num_prompt_tokens = len(response.details.prefill)
    num_generated_tokens = response.details.generated_tokens
    usage = CompletionUsage(
        prompt_tokens=num_prompt_tokens,
        completion_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
    )
    return ChatCompletion(
        id=request_id,
        choices=[choice],
        created=int(time.time()),
        model=request.model,
        object="chat.completion",
        usage=usage,
    )


async def create_chat_completion_stream(
    generator: AsyncIterator[StreamResponse], params: Dict[str, Any], request_id: str
) -> AsyncIterator[ChatCompletionChunk]:
    # First chunk with role
    choice = ChunkChoice(
        index=0,
        delta=ChoiceDelta(role="assistant", content=""),
        finish_reason=None,
        logprobs=None,
    )
    yield ChatCompletionChunk(
        id=request_id,
        choices=[choice],
        created=int(time.time()),
        model=params.get("model", "llm"),
        object="chat.completion.chunk",
    )
    async for output in generator:
        output: StreamResponse
        if output.token.special:
            continue

        choice = ChunkChoice(
            index=0,
            delta=ChoiceDelta(content=output.token.text),
            finish_reason=None,
            logprobs=None,
        )
        yield ChatCompletionChunk(
            id=request_id,
            choices=[choice],
            created=int(time.time()),
            model=params.get("model", "llm"),
            object="chat.completion.chunk",
        )

    choice = ChunkChoice(
        index=0,
        delta=ChoiceDelta(),
        finish_reason="stop",
        logprobs=None,
    )
    yield ChatCompletionChunk(
        id=request_id,
        choices=[choice],
        created=int(time.time()),
        model=params.get("model", "llm"),
        object="chat.completion.chunk",
    )