File size: 3,983 Bytes
ca56e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import time
import uuid
from functools import partial
from typing import (
    Dict,
    Any,
    AsyncIterator,
)

import anyio
from fastapi import APIRouter, Depends
from fastapi import Request
from loguru import logger
from openai.types.completion import Completion
from openai.types.completion_choice import CompletionChoice
from openai.types.completion_usage import CompletionUsage
from sse_starlette import EventSourceResponse
from text_generation.types import Response, StreamResponse

from api.core.tgi import TGIEngine
from api.models import GENERATE_ENGINE
from api.utils.compat import model_dump
from api.utils.protocol import CompletionCreateParams
from api.utils.request import (
    handle_request,
    get_event_publisher,
    check_api_key
)

completion_router = APIRouter()


def get_engine():
    yield GENERATE_ENGINE


@completion_router.post("/completions", dependencies=[Depends(check_api_key)])
async def create_completion(
    request: CompletionCreateParams,
    raw_request: Request,
    engine: TGIEngine = Depends(get_engine),
):
    """ Completion API similar to OpenAI's API. """

    request.max_tokens = request.max_tokens or 128
    request = await handle_request(request, engine.prompt_adapter.stop, chat=False)

    if isinstance(request.prompt, list):
        request.prompt = request.prompt[0]

    request_id: str = f"cmpl-{str(uuid.uuid4())}"
    include = {
        "temperature",
        "best_of",
        "repetition_penalty",
        "typical_p",
        "watermark",
    }
    params = model_dump(request, include=include)
    params.update(
        dict(
            prompt=request.prompt,
            do_sample=request.temperature > 1e-5,
            max_new_tokens=request.max_tokens,
            stop_sequences=request.stop,
            top_p=request.top_p if request.top_p < 1.0 else 0.99,
            return_full_text=request.echo,
        )
    )
    logger.debug(f"==== request ====\n{params}")

    if request.stream:
        generator = engine.generate_stream(**params)
        iterator = create_completion_stream(generator, params, request_id)
        send_chan, recv_chan = anyio.create_memory_object_stream(10)
        return EventSourceResponse(
            recv_chan,
            data_sender_callable=partial(
                get_event_publisher,
                request=raw_request,
                inner_send_chan=send_chan,
                iterator=iterator,
            ),
        )

    # Non-streaming response
    response: Response = await engine.generate(**params)

    finish_reason = response.details.finish_reason.value
    finish_reason = "length" if finish_reason == "length" else "stop"
    choice = CompletionChoice(
        index=0,
        text=response.generated_text,
        finish_reason=finish_reason,
        logprobs=None,
    )

    num_prompt_tokens = len(response.details.prefill)
    num_generated_tokens = response.details.generated_tokens
    usage = CompletionUsage(
        prompt_tokens=num_prompt_tokens,
        completion_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
    )

    return Completion(
        id=request_id,
        choices=[choice],
        created=int(time.time()),
        model=params.get("model", "llm"),
        object="text_completion",
        usage=usage,
    )


async def create_completion_stream(
    generator: AsyncIterator[StreamResponse], params: Dict[str, Any], request_id: str,
) -> AsyncIterator[Completion]:
    async for output in generator:
        output: StreamResponse
        if output.token.special:
            continue

        choice = CompletionChoice(
            index=0,
            text=output.token.text,
            finish_reason="stop",
            logprobs=None,
        )
        yield Completion(
            id=request_id,
            choices=[choice],
            created=int(time.time()),
            model=params.get("model", "llm"),
            object="text_completion",
        )