File size: 16,493 Bytes
ca56e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
from enum import Enum
from typing import Optional, Dict, List, Union, Literal, Any

from openai.types.chat import (
    ChatCompletionMessageParam,
    ChatCompletionToolChoiceOptionParam,
)
from openai.types.chat.completion_create_params import FunctionCall, ResponseFormat
from openai.types.create_embedding_response import Usage
from pydantic import BaseModel


class Role(str, Enum):
    USER = "user"
    ASSISTANT = "assistant"
    SYSTEM = "system"
    FUNCTION = "function"
    TOOL = "tool"


class ErrorResponse(BaseModel):
    object: str = "error"
    message: str
    code: int


class ChatCompletionCreateParams(BaseModel):
    messages: List[ChatCompletionMessageParam]
    """A list of messages comprising the conversation so far.

    [Example Python code](https://cookbook.openai.com/examples/how_to_format_inputs_to_chatgpt_models).
    """

    model: str
    """ID of the model to use.

    See the
    [model endpoint compatibility](https://platform.openai.com/docs/models/model-endpoint-compatibility)
    table for details on which models work with the Chat API.
    """

    frequency_penalty: Optional[float] = 0.
    """Number between -2.0 and 2.0.

    Positive values penalize new tokens based on their existing frequency in the
    text so far, decreasing the model's likelihood to repeat the same line verbatim.

    [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/gpt/parameter-details)
    """

    function_call: Optional[FunctionCall] = None
    """Deprecated in favor of `tool_choice`.

    Controls which (if any) function is called by the model. `none` means the model
    will not call a function and instead generates a message. `auto` means the model
    can pick between generating a message or calling a function. Specifying a
    particular function via `{"name": "my_function"}` forces the model to call that
    function.

    `none` is the default when no functions are present. `auto`` is the default if
    functions are present.
    """

    functions: Optional[List] = None
    """Deprecated in favor of `tools`.

    A list of functions the model may generate JSON inputs for.
    """

    logit_bias: Optional[Dict[str, int]] = None
    """Modify the likelihood of specified tokens appearing in the completion.

    Accepts a JSON object that maps tokens (specified by their token ID in the
    tokenizer) to an associated bias value from -100 to 100. Mathematically, the
    bias is added to the logits generated by the model prior to sampling. The exact
    effect will vary per model, but values between -1 and 1 should decrease or
    increase likelihood of selection; values like -100 or 100 should result in a ban
    or exclusive selection of the relevant token.
    """

    max_tokens: Optional[int] = None
    """The maximum number of [tokens](/tokenizer) to generate in the chat completion.

    The total length of input tokens and generated tokens is limited by the model's
    context length.
    [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
    for counting tokens.
    """

    n: Optional[int] = 1
    """How many chat completion choices to generate for each input message."""

    presence_penalty: Optional[float] = 0.
    """Number between -2.0 and 2.0.

    Positive values penalize new tokens based on whether they appear in the text so
    far, increasing the model's likelihood to talk about new topics.

    [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/gpt/parameter-details)
    """

    response_format: Optional[ResponseFormat] = None
    """An object specifying the format that the model must output.

    Used to enable JSON mode.
    """

    seed: Optional[int] = None
    """This feature is in Beta.

    If specified, our system will make a best effort to sample deterministically,
    such that repeated requests with the same `seed` and parameters should return
    the same result. Determinism is not guaranteed, and you should refer to the
    `system_fingerprint` response parameter to monitor changes in the backend.
    """

    stop: Optional[Union[str, List[str]]] = None
    """Up to 4 sequences where the API will stop generating further tokens."""

    temperature: Optional[float] = 0.9
    """What sampling temperature to use, between 0 and 2.

    Higher values like 0.8 will make the output more random, while lower values like
    0.2 will make it more focused and deterministic.

    We generally recommend altering this or `top_p` but not both.
    """

    tool_choice: Optional[ChatCompletionToolChoiceOptionParam] = None
    """
    Controls which (if any) function is called by the model. `none` means the model
    will not call a function and instead generates a message. `auto` means the model
    can pick between generating a message or calling a function. Specifying a
    particular function via
    `{"type: "function", "function": {"name": "my_function"}}` forces the model to
    call that function.

    `none` is the default when no functions are present. `auto` is the default if
    functions are present.
    """

    tools: Optional[List] = None
    """A list of tools the model may call.

    Currently, only functions are supported as a tool. Use this to provide a list of
    functions the model may generate JSON inputs for.
    """

    top_p: Optional[float] = 1.0
    """
    An alternative to sampling with temperature, called nucleus sampling, where the
    model considers the results of the tokens with top_p probability mass. So 0.1
    means only the tokens comprising the top 10% probability mass are considered.

    We generally recommend altering this or `temperature` but not both.
    """

    user: Optional[str] = None
    """
    A unique identifier representing your end-user, which can help OpenAI to monitor
    and detect abuse.
    [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
    """

    stream: Optional[bool] = False
    """If set, partial message deltas will be sent, like in ChatGPT.

    Tokens will be sent as data-only
    [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
    as they become available, with the stream terminated by a `data: [DONE]`
    message.
    [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
    """

    # Addictional parameters
    repetition_penalty: Optional[float] = 1.03
    """The parameter for repetition penalty. 1.0 means no penalty.
    See[this paper](https://arxiv.org / pdf / 1909.05858.pdf) for more details.
    """

    typical_p: Optional[float] = None
    """Typical Decoding mass.
    See[Typical Decoding for Natural Language Generation](https://arxiv.org / abs / 2202.00666) for more information
    """

    watermark: Optional[bool] = False
    """Watermarking with [A Watermark for Large Language Models](https://arxiv.org / abs / 2301.10226)
    """

    best_of: Optional[int] = 1

    ignore_eos: Optional[bool] = False

    use_beam_search: Optional[bool] = False

    stop_token_ids: Optional[List[int]] = None

    skip_special_tokens: Optional[bool] = True

    spaces_between_special_tokens: Optional[bool] = True

    min_p: Optional[float] = 0.0


class CompletionCreateParams(BaseModel):
    model: str
    """ID of the model to use.

    You can use the
    [List models](https://platform.openai.com/docs/api-reference/models/list) API to
    see all of your available models, or see our
    [Model overview](https://platform.openai.com/docs/models/overview) for
    descriptions of them.
    """

    prompt: Union[str, List[str], List[int], List[List[int]], None]
    """
    The prompt(s) to generate completions for, encoded as a string, array of
    strings, array of tokens, or array of token arrays.

    Note that <|endoftext|> is the document separator that the model sees during
    training, so if a prompt is not specified the model will generate as if from the
    beginning of a new document.
    """

    best_of: Optional[int] = 1
    """
    Generates `best_of` completions server-side and returns the "best" (the one with
    the highest log probability per token). Results cannot be streamed.

    When used with `n`, `best_of` controls the number of candidate completions and
    `n` specifies how many to return – `best_of` must be greater than `n`.

    **Note:** Because this parameter generates many completions, it can quickly
    consume your token quota. Use carefully and ensure that you have reasonable
    settings for `max_tokens` and `stop`.
    """

    echo: Optional[bool] = False
    """Echo back the prompt in addition to the completion"""

    frequency_penalty: Optional[float] = 0.
    """Number between -2.0 and 2.0.

    Positive values penalize new tokens based on their existing frequency in the
    text so far, decreasing the model's likelihood to repeat the same line verbatim.

    [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/gpt/parameter-details)
    """

    logit_bias: Optional[Dict[str, int]] = None
    """Modify the likelihood of specified tokens appearing in the completion.

    Accepts a JSON object that maps tokens (specified by their token ID in the GPT
    tokenizer) to an associated bias value from -100 to 100. You can use this
    [tokenizer tool](/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to
    convert text to token IDs. Mathematically, the bias is added to the logits
    generated by the model prior to sampling. The exact effect will vary per model,
    but values between -1 and 1 should decrease or increase likelihood of selection;
    values like -100 or 100 should result in a ban or exclusive selection of the
    relevant token.

    As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
    from being generated.
    """

    logprobs: Optional[int] = None
    """
    Include the log probabilities on the `logprobs` most likely tokens, as well the
    chosen tokens. For example, if `logprobs` is 5, the API will return a list of
    the 5 most likely tokens. The API will always return the `logprob` of the
    sampled token, so there may be up to `logprobs+1` elements in the response.

    The maximum value for `logprobs` is 5.
    """

    max_tokens: Optional[int] = 16
    """The maximum number of [tokens](/tokenizer) to generate in the completion.

    The token count of your prompt plus `max_tokens` cannot exceed the model's
    context length.
    [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
    for counting tokens.
    """

    n: Optional[int] = 1
    """How many completions to generate for each prompt.

    **Note:** Because this parameter generates many completions, it can quickly
    consume your token quota. Use carefully and ensure that you have reasonable
    settings for `max_tokens` and `stop`.
    """

    presence_penalty: Optional[float] = 0.
    """Number between -2.0 and 2.0.

    Positive values penalize new tokens based on whether they appear in the text so
    far, increasing the model's likelihood to talk about new topics.

    [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/gpt/parameter-details)
    """

    seed: Optional[int] = None
    """
    If specified, our system will make a best effort to sample deterministically,
    such that repeated requests with the same `seed` and parameters should return
    the same result.

    Determinism is not guaranteed, and you should refer to the `system_fingerprint`
    response parameter to monitor changes in the backend.
    """

    stop: Optional[Union[str, List[str]]] = None
    """Up to 4 sequences where the API will stop generating further tokens.

    The returned text will not contain the stop sequence.
    """

    suffix: Optional[str] = None
    """The suffix that comes after a completion of inserted text."""

    temperature: Optional[float] = 1.
    """What sampling temperature to use, between 0 and 2.

    Higher values like 0.8 will make the output more random, while lower values like
    0.2 will make it more focused and deterministic.

    We generally recommend altering this or `top_p` but not both.
    """

    top_p: Optional[float] = 1.
    """
    An alternative to sampling with temperature, called nucleus sampling, where the
    model considers the results of the tokens with top_p probability mass. So 0.1
    means only the tokens comprising the top 10% probability mass are considered.

    We generally recommend altering this or `temperature` but not both.
    """

    user: Optional[str] = None
    """
    A unique identifier representing your end-user, which can help OpenAI to monitor
    and detect abuse.
    [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
    """

    stream: Optional[bool] = False
    """If set, partial message deltas will be sent, like in ChatGPT.

    Tokens will be sent as data-only
    [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
    as they become available, with the stream terminated by a `data: [DONE]`
    message.
    [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
    """

    # Addictional parameters
    repetition_penalty: Optional[float] = 1.03
    """The parameter for repetition penalty. 1.0 means no penalty.
    See[this paper](https://arxiv.org / pdf / 1909.05858.pdf) for more details.
    """

    typical_p: Optional[float] = None
    """Typical Decoding mass.
    See[Typical Decoding for Natural Language Generation](https://arxiv.org / abs / 2202.00666) for more information
    """

    watermark: Optional[bool] = False
    """Watermarking with [A Watermark for Large Language Models](https://arxiv.org / abs / 2301.10226)
    """

    ignore_eos: Optional[bool] = False

    use_beam_search: Optional[bool] = False

    stop_token_ids: Optional[List[int]] = None

    skip_special_tokens: Optional[bool] = True

    spaces_between_special_tokens: Optional[bool] = True

    min_p: Optional[float] = 0.0


class EmbeddingCreateParams(BaseModel):
    input: Union[str, List[str], List[int], List[List[int]]]
    """Input text to embed, encoded as a string or array of tokens.

    To embed multiple inputs in a single request, pass an array of strings or array
    of token arrays. The input must not exceed the max input tokens for the model
    (8192 tokens for `text-embedding-ada-002`) and cannot be an empty string.
    [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
    for counting tokens.
    """

    model: str
    """ID of the model to use.

    You can use the
    [List models](https://platform.openai.com/docs/api-reference/models/list) API to
    see all of your available models, or see our
    [Model overview](https://platform.openai.com/docs/models/overview) for
    descriptions of them.
    """

    encoding_format: Literal["float", "base64"] = "float"
    """The format to return the embeddings in.

    Can be either `float` or [`base64`](https://pypi.org/project/pybase64/).
    """

    user: Optional[str] = None
    """
    A unique identifier representing your end-user, which can help OpenAI to monitor
    and detect abuse.
    [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
    """


class Embedding(BaseModel):
    embedding: Any
    """The embedding vector, which is a list of floats.

    The length of vector depends on the model as listed in the
    [embedding guide](https://platform.openai.com/docs/guides/embeddings).
    """

    index: int
    """The index of the embedding in the list of embeddings."""

    object: Literal["embedding"]
    """The object type, which is always "embedding"."""


class CreateEmbeddingResponse(BaseModel):
    data: List[Embedding]
    """The list of embeddings generated by the model."""

    model: str
    """The name of the model used to generate the embedding."""

    object: Literal["list"]
    """The object type, which is always "list"."""

    usage: Usage
    """The usage information for the request."""