File size: 7,402 Bytes
ca56e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import time
import traceback
import uuid
from functools import partial
from typing import (
    Dict,
    Any,
    AsyncIterator,
)

import anyio
from fastapi import APIRouter, Depends
from fastapi import HTTPException, Request
from loguru import logger
from openai.types.chat import (
    ChatCompletionMessage,
    ChatCompletion,
    ChatCompletionChunk,
)
from openai.types.chat.chat_completion import Choice
from openai.types.chat.chat_completion_chunk import Choice as ChunkChoice
from openai.types.chat.chat_completion_chunk import ChoiceDelta
from openai.types.chat.chat_completion_message import FunctionCall
from openai.types.chat.chat_completion_message_tool_call import ChatCompletionMessageToolCall
from openai.types.completion_usage import CompletionUsage
from sse_starlette import EventSourceResponse
from vllm.outputs import RequestOutput

from api.core.vllm_engine import VllmEngine
from api.models import GENERATE_ENGINE
from api.utils.compat import model_dump, model_parse
from api.utils.protocol import Role, ChatCompletionCreateParams
from api.utils.request import (
    check_api_key,
    handle_request,
    get_event_publisher,
)

chat_router = APIRouter(prefix="/chat")


def get_engine():
    yield GENERATE_ENGINE


@chat_router.post("/completions", dependencies=[Depends(check_api_key)])
async def create_chat_completion(
    request: ChatCompletionCreateParams,
    raw_request: Request,
    engine: VllmEngine = Depends(get_engine),
):
    if (not request.messages) or request.messages[-1]["role"] == Role.ASSISTANT:
        raise HTTPException(status_code=400, detail="Invalid request")

    request = await handle_request(request, engine.prompt_adapter.stop)
    request.max_tokens = request.max_tokens or 512

    params = model_dump(request, exclude={"messages"})
    params.update(dict(prompt_or_messages=request.messages, echo=False))
    logger.debug(f"==== request ====\n{params}")

    request_id: str = f"chatcmpl-{str(uuid.uuid4())}"
    generator = engine.generate(params, request_id)

    if request.stream:
        iterator = create_chat_completion_stream(generator, params, request_id)
        send_chan, recv_chan = anyio.create_memory_object_stream(10)
        return EventSourceResponse(
            recv_chan,
            data_sender_callable=partial(
                get_event_publisher,
                request=raw_request,
                inner_send_chan=send_chan,
                iterator=iterator,
            ),
        )
    else:
        # Non-streaming response
        final_res: RequestOutput = None
        async for res in generator:
            if raw_request is not None and await raw_request.is_disconnected():
                await engine.model.abort(request_id)
                return
            final_res = res

        assert final_res is not None
        choices = []
        functions = params.get("functions", None)
        tools = params.get("tools", None)
        for output in final_res.outputs:
            output.text = output.text.replace("�", "")

            finish_reason = output.finish_reason
            function_call = None
            if functions or tools:
                try:
                    res, function_call = engine.prompt_adapter.parse_assistant_response(
                        output.text, functions, tools,
                    )
                    output.text = res
                except Exception as e:
                    traceback.print_exc()
                    logger.warning("Failed to parse tool call")

            if isinstance(function_call, dict) and "arguments" in function_call:
                function_call = FunctionCall(**function_call)
                message = ChatCompletionMessage(
                    role="assistant",
                    content=output.text,
                    function_call=function_call
                )
                finish_reason = "function_call"
            elif isinstance(function_call, dict) and "function" in function_call:
                finish_reason = "tool_calls"
                tool_calls = [model_parse(ChatCompletionMessageToolCall, function_call)]
                message = ChatCompletionMessage(
                    role="assistant",
                    content=output.text,
                    tool_calls=tool_calls,
                )
            else:
                message = ChatCompletionMessage(role="assistant", content=output.text)

            choices.append(
                Choice(
                    index=output.index,
                    message=message,
                    finish_reason=finish_reason,
                )
            )

        num_prompt_tokens = len(final_res.prompt_token_ids)
        num_generated_tokens = sum(len(output.token_ids) for output in final_res.outputs)
        usage = CompletionUsage(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )
        return ChatCompletion(
            id=request_id,
            choices=choices,
            created=int(time.time()),
            model=request.model,
            object="chat.completion",
            usage=usage,
        )


async def create_chat_completion_stream(generator: AsyncIterator, params: Dict[str, Any], request_id: str) -> AsyncIterator:
    n = params.get("n", 1)
    for i in range(n):
        # First chunk with role
        choice = ChunkChoice(
            index=i,
            delta=ChoiceDelta(role="assistant", content=""),
            finish_reason=None,
            logprobs=None,
        )
        yield ChatCompletionChunk(
            id=request_id,
            choices=[choice],
            created=int(time.time()),
            model=params.get("model", "llm"),
            object="chat.completion.chunk",
        )

        previous_texts = [""] * n
        previous_num_tokens = [0] * n
        async for res in generator:
            res: RequestOutput
            for output in res.outputs:
                i = output.index
                output.text = output.text.replace("�", "")

                delta_text = output.text[len(previous_texts[i]):]
                previous_texts[i] = output.text
                previous_num_tokens[i] = len(output.token_ids)

                choice = ChunkChoice(
                    index=i,
                    delta=ChoiceDelta(content=delta_text),
                    finish_reason=output.finish_reason,
                    logprobs=None,
                )
                yield ChatCompletionChunk(
                    id=request_id,
                    choices=[choice],
                    created=int(time.time()),
                    model=params.get("model", "llm"),
                    object="chat.completion.chunk",
                )

                if output.finish_reason is not None:
                    choice = ChunkChoice(
                        index=i,
                        delta=ChoiceDelta(),
                        finish_reason="stop",
                        logprobs=None,
                    )
                    yield ChatCompletionChunk(
                        id=request_id,
                        choices=[choice],
                        created=int(time.time()),
                        model=params.get("model", "llm"),
                        object="chat.completion.chunk",
                    )