File size: 7,670 Bytes
ca56e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import time
import uuid
from functools import partial
from typing import (
    List,
    Dict,
    Any,
    AsyncIterator,
    Optional,
)

import anyio
from fastapi import APIRouter, Depends
from fastapi import HTTPException, Request
from loguru import logger
from openai.types.completion import Completion
from openai.types.completion_choice import CompletionChoice, Logprobs
from openai.types.completion_usage import CompletionUsage
from sse_starlette import EventSourceResponse
from vllm.outputs import RequestOutput

from api.core.vllm_engine import VllmEngine
from api.models import GENERATE_ENGINE
from api.utils.compat import model_dump
from api.utils.protocol import CompletionCreateParams
from api.utils.request import (
    handle_request,
    get_event_publisher,
    check_api_key
)

completion_router = APIRouter()


def get_engine():
    yield GENERATE_ENGINE


@completion_router.post("/completions", dependencies=[Depends(check_api_key)])
async def create_completion(
    request: CompletionCreateParams,
    raw_request: Request,
    engine: VllmEngine = Depends(get_engine),
):
    """Completion API similar to OpenAI's API.

    See https://platform.openai.com/docs/api-reference/completions/create
    for the API specification. This API mimics the OpenAI Completion API.
    """
    if request.echo:
        # We do not support echo since the vLLM engine does not
        # currently support getting the logprobs of prompt tokens.
        raise HTTPException(status_code=400, detail="echo is not currently supported")

    if request.suffix:
        # The language models we currently support do not support suffix.
        raise HTTPException(status_code=400, detail="suffix is not currently supported")

    request.max_tokens = request.max_tokens or 128
    request = await handle_request(request, engine.prompt_adapter.stop, chat=False)

    if isinstance(request.prompt, list):
        request.prompt = request.prompt[0]

    params = model_dump(request, exclude={"prompt"})
    params.update(dict(prompt_or_messages=request.prompt))
    logger.debug(f"==== request ====\n{params}")

    request_id: str = f"cmpl-{str(uuid.uuid4())}"
    generator = engine.generate(params, request_id)

    if request.stream:
        iterator = create_completion_stream(generator, params, request_id, engine.tokenizer)
        send_chan, recv_chan = anyio.create_memory_object_stream(10)
        return EventSourceResponse(
            recv_chan,
            data_sender_callable=partial(
                get_event_publisher,
                request=raw_request,
                inner_send_chan=send_chan,
                iterator=iterator,
            ),
        )
    else:
        # Non-streaming response
        final_res: RequestOutput = None
        async for res in generator:
            if raw_request is not None and await raw_request.is_disconnected():
                await engine.model.abort(request_id)
                return
            final_res = res

        assert final_res is not None
        choices = []
        for output in final_res.outputs:
            output.text = output.text.replace("�", "")
            logprobs = None
            if params.get("logprobs", None) is not None:
                logprobs = create_logprobs(engine.tokenizer, output.token_ids, output.logprobs)

            choice = CompletionChoice(
                index=output.index,
                text=output.text,
                finish_reason=output.finish_reason,
                logprobs=logprobs,
            )
            choices.append(choice)

        num_prompt_tokens = len(final_res.prompt_token_ids)
        num_generated_tokens = sum(len(output.token_ids) for output in final_res.outputs)
        usage = CompletionUsage(
            prompt_tokens=num_prompt_tokens,
            completion_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
        )

        return Completion(
            id=request_id,
            choices=choices,
            created=int(time.time()),
            model=params.get("model", "llm"),
            object="text_completion",
            usage=usage,
        )


def create_logprobs(
    tokenizer,
    token_ids: List[int],
    top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None,
    num_output_top_logprobs: Optional[int] = None,
    initial_text_offset: int = 0,
) -> Logprobs:
    logprobs = Logprobs(text_offset=[], token_logprobs=[], tokens=[], top_logprobs=None)
    last_token_len = 0
    if num_output_top_logprobs:
        logprobs.top_logprobs = []

    for i, token_id in enumerate(token_ids):
        step_top_logprobs = top_logprobs[i]
        if step_top_logprobs is not None:
            token_logprob = step_top_logprobs[token_id]
        else:
            token_logprob = None

        token = tokenizer.convert_ids_to_tokens(token_id)
        logprobs.tokens.append(token)
        logprobs.token_logprobs.append(token_logprob)
        if len(logprobs.text_offset) == 0:
            logprobs.text_offset.append(initial_text_offset)
        else:
            logprobs.text_offset.append(logprobs.text_offset[-1] + last_token_len)
        last_token_len = len(token)

        if num_output_top_logprobs:
            logprobs.top_logprobs.append(
                {
                    tokenizer.convert_ids_to_tokens(i): p
                    for i, p in step_top_logprobs.items()
                }
                if step_top_logprobs else None
            )
    return logprobs


async def create_completion_stream(
    generator: AsyncIterator, params: Dict[str, Any], request_id: str, tokenizer,
) -> AsyncIterator:
    n = params.get("n", 1)
    previous_texts = [""] * n
    previous_num_tokens = [0] * n
    async for res in generator:
        res: RequestOutput
        for output in res.outputs:
            i = output.index
            output.text = output.text.replace("�", "")
            delta_text = output.text[len(previous_texts[i]):]

            if params.get("logprobs") is not None:
                logprobs = create_logprobs(
                    tokenizer,
                    output.token_ids[previous_num_tokens[i]:],
                    output.logprobs[previous_num_tokens[i]:],
                    len(previous_texts[i])
                )
            else:
                logprobs = None

            previous_texts[i] = output.text
            previous_num_tokens[i] = len(output.token_ids)

            choice = CompletionChoice(
                index=i,
                text=delta_text,
                finish_reason="stop",
                logprobs=logprobs,
            )
            yield Completion(
                id=request_id,
                choices=[choice],
                created=int(time.time()),
                model=params.get("model", "llm"),
                object="text_completion",
            )

            if output.finish_reason is not None:
                if params.get("logprobs") is not None:
                    logprobs = Logprobs(
                        text_offset=[], token_logprobs=[], tokens=[], top_logprobs=[]
                    )
                else:
                    logprobs = None

                choice = CompletionChoice(
                    index=i,
                    text=delta_text,
                    finish_reason="stop",
                    logprobs=logprobs,
                )
                yield Completion(
                    id=request_id,
                    choices=[choice],
                    created=int(time.time()),
                    model=params.get("model", "llm"),
                    object="text_completion",
                )