Spaces:
Running
Running
import time | |
import uuid | |
from functools import partial | |
from typing import ( | |
List, | |
Dict, | |
Any, | |
AsyncIterator, | |
Optional, | |
) | |
import anyio | |
from fastapi import APIRouter, Depends | |
from fastapi import HTTPException, Request | |
from loguru import logger | |
from openai.types.completion import Completion | |
from openai.types.completion_choice import CompletionChoice, Logprobs | |
from openai.types.completion_usage import CompletionUsage | |
from sse_starlette import EventSourceResponse | |
from vllm.outputs import RequestOutput | |
from api.core.vllm_engine import VllmEngine | |
from api.models import GENERATE_ENGINE | |
from api.utils.compat import model_dump | |
from api.utils.protocol import CompletionCreateParams | |
from api.utils.request import ( | |
handle_request, | |
get_event_publisher, | |
check_api_key | |
) | |
completion_router = APIRouter() | |
def get_engine(): | |
yield GENERATE_ENGINE | |
async def create_completion( | |
request: CompletionCreateParams, | |
raw_request: Request, | |
engine: VllmEngine = Depends(get_engine), | |
): | |
"""Completion API similar to OpenAI's API. | |
See https://platform.openai.com/docs/api-reference/completions/create | |
for the API specification. This API mimics the OpenAI Completion API. | |
""" | |
if request.echo: | |
# We do not support echo since the vLLM engine does not | |
# currently support getting the logprobs of prompt tokens. | |
raise HTTPException(status_code=400, detail="echo is not currently supported") | |
if request.suffix: | |
# The language models we currently support do not support suffix. | |
raise HTTPException(status_code=400, detail="suffix is not currently supported") | |
request.max_tokens = request.max_tokens or 128 | |
request = await handle_request(request, engine.prompt_adapter.stop, chat=False) | |
if isinstance(request.prompt, list): | |
request.prompt = request.prompt[0] | |
params = model_dump(request, exclude={"prompt"}) | |
params.update(dict(prompt_or_messages=request.prompt)) | |
logger.debug(f"==== request ====\n{params}") | |
request_id: str = f"cmpl-{str(uuid.uuid4())}" | |
generator = engine.generate(params, request_id) | |
if request.stream: | |
iterator = create_completion_stream(generator, params, request_id, engine.tokenizer) | |
send_chan, recv_chan = anyio.create_memory_object_stream(10) | |
return EventSourceResponse( | |
recv_chan, | |
data_sender_callable=partial( | |
get_event_publisher, | |
request=raw_request, | |
inner_send_chan=send_chan, | |
iterator=iterator, | |
), | |
) | |
else: | |
# Non-streaming response | |
final_res: RequestOutput = None | |
async for res in generator: | |
if raw_request is not None and await raw_request.is_disconnected(): | |
await engine.model.abort(request_id) | |
return | |
final_res = res | |
assert final_res is not None | |
choices = [] | |
for output in final_res.outputs: | |
output.text = output.text.replace("�", "") | |
logprobs = None | |
if params.get("logprobs", None) is not None: | |
logprobs = create_logprobs(engine.tokenizer, output.token_ids, output.logprobs) | |
choice = CompletionChoice( | |
index=output.index, | |
text=output.text, | |
finish_reason=output.finish_reason, | |
logprobs=logprobs, | |
) | |
choices.append(choice) | |
num_prompt_tokens = len(final_res.prompt_token_ids) | |
num_generated_tokens = sum(len(output.token_ids) for output in final_res.outputs) | |
usage = CompletionUsage( | |
prompt_tokens=num_prompt_tokens, | |
completion_tokens=num_generated_tokens, | |
total_tokens=num_prompt_tokens + num_generated_tokens, | |
) | |
return Completion( | |
id=request_id, | |
choices=choices, | |
created=int(time.time()), | |
model=params.get("model", "llm"), | |
object="text_completion", | |
usage=usage, | |
) | |
def create_logprobs( | |
tokenizer, | |
token_ids: List[int], | |
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None, | |
num_output_top_logprobs: Optional[int] = None, | |
initial_text_offset: int = 0, | |
) -> Logprobs: | |
logprobs = Logprobs(text_offset=[], token_logprobs=[], tokens=[], top_logprobs=None) | |
last_token_len = 0 | |
if num_output_top_logprobs: | |
logprobs.top_logprobs = [] | |
for i, token_id in enumerate(token_ids): | |
step_top_logprobs = top_logprobs[i] | |
if step_top_logprobs is not None: | |
token_logprob = step_top_logprobs[token_id] | |
else: | |
token_logprob = None | |
token = tokenizer.convert_ids_to_tokens(token_id) | |
logprobs.tokens.append(token) | |
logprobs.token_logprobs.append(token_logprob) | |
if len(logprobs.text_offset) == 0: | |
logprobs.text_offset.append(initial_text_offset) | |
else: | |
logprobs.text_offset.append(logprobs.text_offset[-1] + last_token_len) | |
last_token_len = len(token) | |
if num_output_top_logprobs: | |
logprobs.top_logprobs.append( | |
{ | |
tokenizer.convert_ids_to_tokens(i): p | |
for i, p in step_top_logprobs.items() | |
} | |
if step_top_logprobs else None | |
) | |
return logprobs | |
async def create_completion_stream( | |
generator: AsyncIterator, params: Dict[str, Any], request_id: str, tokenizer, | |
) -> AsyncIterator: | |
n = params.get("n", 1) | |
previous_texts = [""] * n | |
previous_num_tokens = [0] * n | |
async for res in generator: | |
res: RequestOutput | |
for output in res.outputs: | |
i = output.index | |
output.text = output.text.replace("�", "") | |
delta_text = output.text[len(previous_texts[i]):] | |
if params.get("logprobs") is not None: | |
logprobs = create_logprobs( | |
tokenizer, | |
output.token_ids[previous_num_tokens[i]:], | |
output.logprobs[previous_num_tokens[i]:], | |
len(previous_texts[i]) | |
) | |
else: | |
logprobs = None | |
previous_texts[i] = output.text | |
previous_num_tokens[i] = len(output.token_ids) | |
choice = CompletionChoice( | |
index=i, | |
text=delta_text, | |
finish_reason="stop", | |
logprobs=logprobs, | |
) | |
yield Completion( | |
id=request_id, | |
choices=[choice], | |
created=int(time.time()), | |
model=params.get("model", "llm"), | |
object="text_completion", | |
) | |
if output.finish_reason is not None: | |
if params.get("logprobs") is not None: | |
logprobs = Logprobs( | |
text_offset=[], token_logprobs=[], tokens=[], top_logprobs=[] | |
) | |
else: | |
logprobs = None | |
choice = CompletionChoice( | |
index=i, | |
text=delta_text, | |
finish_reason="stop", | |
logprobs=logprobs, | |
) | |
yield Completion( | |
id=request_id, | |
choices=[choice], | |
created=int(time.time()), | |
model=params.get("model", "llm"), | |
object="text_completion", | |
) | |