Spaces:
Running
Running
import math | |
from typing import Optional, Tuple, Union | |
import torch | |
import transformers | |
from torch import nn | |
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, rotate_half | |
try: | |
from xformers import ops as xops | |
except ImportError: | |
xops = None | |
print( | |
"Xformers is not installed correctly. If you want to use memory_efficient_attention use the following command to install Xformers\npip install xformers." | |
) | |
STORE_KV_BEFORE_ROPE = False | |
USE_MEM_EFF_ATTENTION = False | |
ALPHA = 1.0 | |
AUTO_COEFF = 1.0 | |
SCALING_FACTOR = None | |
def apply_rotary_pos_emb_single(q, cos, sin, position_ids): | |
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them. | |
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] | |
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] | |
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] | |
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
return q_embed | |
def xformers_forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
if STORE_KV_BEFORE_ROPE is False: | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
# [bsz, nh, t, hd] | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
else: | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states = apply_rotary_pos_emb_single(query_states, cos, sin, position_ids) | |
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=cos.device) | |
position_ids = position_ids.unsqueeze(0).view(-1, kv_seq_len) | |
key_states = apply_rotary_pos_emb_single(key_states, cos, sin, position_ids) | |
if xops is not None and USE_MEM_EFF_ATTENTION: | |
attn_weights = None | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
attn_bias = None if (query_states.size(1) == 1 and key_states.size(1) > 1) else xops.LowerTriangularMask() | |
attn_output = xops.memory_efficient_attention( | |
query_states, key_states, value_states, attn_bias=attn_bias, p=0) | |
else: | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
attn_weights = torch.max( | |
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) | |
) | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) | |
t = t / self.scaling_factor | |
freqs = torch.einsum("i,j->ij", t, self.ntk_inv_freq.to(device)) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) | |
def adaptive_ntk_init(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=None): | |
self.alpha = ALPHA | |
if SCALING_FACTOR is None: | |
self.scaling_factor = scaling_factor or 1.0 | |
else: | |
self.scaling_factor = SCALING_FACTOR | |
if isinstance(ALPHA, (float, int)): | |
base = base * ALPHA ** (dim / (dim - 2)) | |
self.base = base | |
elif ALPHA == 'auto': | |
self.base = base | |
else: | |
raise ValueError(ALPHA) | |
old_init(self, dim, max_position_embeddings, base, device) | |
self.ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) | |
self._set_cos_sin_cache = _set_cos_sin_cache | |
self._set_cos_sin_cache( | |
self, seq_len=max_position_embeddings, device=self.ntk_inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def adaptive_ntk_forward(self, x, seq_len=None): | |
if seq_len > self.max_seq_len_cached: | |
if isinstance(self.alpha, (float, int)): | |
self._set_cos_sin_cache(self, seq_len=seq_len, device=x.device, dtype=x.dtype) | |
elif self.alpha == 'auto': | |
t = torch.arange(seq_len, device=x.device, dtype=torch.float32) | |
t = t / self.scaling_factor | |
dim = self.dim | |
alpha = (seq_len / (self.max_position_embeddings / 2) - 1) * AUTO_COEFF | |
base = self.base * alpha ** (dim / (dim - 2)) | |
ntk_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(x.device) / dim)) | |
freqs = torch.einsum("i,j->ij", t, ntk_inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
cos_cached = emb.cos()[None, None, :, :] | |
sin_cached = emb.sin()[None, None, :, :] | |
return ( | |
cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype) | |
) | |
return ( | |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype) | |
) | |
def apply_attention_patch( | |
use_memory_efficient_attention=False, | |
store_kv_before_rope=False, | |
): | |
global USE_MEM_EFF_ATTENTION, STORE_KV_BEFORE_ROPE | |
if use_memory_efficient_attention is True and xops is not None: | |
USE_MEM_EFF_ATTENTION = use_memory_efficient_attention | |
print("USE_MEM_EFF_ATTENTION: ", USE_MEM_EFF_ATTENTION) | |
STORE_KV_BEFORE_ROPE = store_kv_before_rope | |
print("STORE_KV_BEFORE_ROPE:", STORE_KV_BEFORE_ROPE) | |
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward | |
def apply_ntk_scaling_patch(alpha: Union[float, str], scaling_factor: Optional[float] = None): | |
global ALPHA | |
global SCALING_FACTOR | |
ALPHA = alpha | |
SCALING_FACTOR = scaling_factor | |
try: | |
ALPHA = float(ALPHA) | |
except ValueError: | |
if ALPHA != "auto": | |
raise ValueError(f"Alpha can only be a float or 'auto', but given {ALPHA}") | |
print(f"Apply NTK scaling with ALPHA={ALPHA}") | |
if scaling_factor is None: | |
print(f"The value of scaling factor will be read from model config file, or set to 1.") | |
else: | |
print(f"Warning: scaling factor is set to {SCALING_FACTOR}. \ | |
If you set the value by hand, do not forget to update \ | |
max_position_embeddings in the model config file.") | |
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = adaptive_ntk_init | |
if hasattr(transformers.models.llama.modeling_llama, 'LlamaLinearScalingRotaryEmbedding'): | |
transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding.__init__ = adaptive_ntk_init | |
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.forward = adaptive_ntk_forward | |