""" Apply the LoRA weights on top of a base model. Usage: python api/utils/apply_lora.py --base ~/model_weights/llama-7b --target ~/model_weights/baize-7b --lora project-baize/baize-lora-7B """ import argparse import torch from peft import PeftModel from transformers import AutoTokenizer, AutoModelForCausalLM def apply_lora(base_model_path, target_model_path, lora_path): print(f"Loading the base model from {base_model_path}") base = AutoModelForCausalLM.from_pretrained( base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True, ) base_tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False, trust_remote_code=True) print(f"Loading the LoRA adapter from {lora_path}") lora_model = PeftModel.from_pretrained(base, lora_path) print("Applying the LoRA") model = lora_model.merge_and_unload() print(f"Saving the target model to {target_model_path}") model.save_pretrained(target_model_path) base_tokenizer.save_pretrained(target_model_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--base-model-path", type=str, required=True) parser.add_argument("--target-model-path", type=str, required=True) parser.add_argument("--lora-path", type=str, required=True) args = parser.parse_args() apply_lora(args.base_model_path, args.target_model_path, args.lora_path)