from fastai.vision.all import * from fastai.text.all import * from fastai.collab import * from fastai.tabular.all import * # import pathlib # temp = pathlib.PosixPath # pathlib.PosixPath = pathlib.WindowsPath import gradio as gr learn = load_learner('model.pkl') categories = ('golden', 'not golden') def classify_img(img): pred, pred_idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label(num_top_classes=2) #examples = ["golden_retriever.jpg", "cat.jpg", "dog.jpg"] intf = gr.Interface(fn=classify_img, inputs=image, outputs=label) intf.launch(inline=False)