File size: 6,510 Bytes
140efa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import torch.nn as nn
import re
import math
from transformers.modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)

from typing import Any, Optional, Tuple, Union
from transformers.modeling_outputs import BaseModelOutput

from functools import partial
from einops import rearrange
import numpy as np 
import random 
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from collections import OrderedDict
import math
import requests
from io import BytesIO
from functools import partial
from PIL import Image
from typing import Callable, Optional, Sequence, Tuple, List, Union
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import trunc_normal_
from torchvision import transforms
from torchvision.transforms import InterpolationMode

def build_matryoshka_query_transformer(config, delay_load=False, **kwargs):
    
    target_sequence_length = 256
    import math
    grid_size = int(math.sqrt(target_sequence_length))
    
    resampler = Resampler(
        grid_size=grid_size,
        embed_dim =config.hidden_size,
        num_heads = 16,
        kv_dim=1024,
    )
    return resampler


def get_matry_n(num_visual_tokens):
    if num_visual_tokens == 'first_stage':
        return 256
    elif num_visual_tokens == 'second_stage':
        matry_list = range(2, 258, 2)
        return random.choice(matry_list)
    
    try:
        num_visual_tokens = int(num_visual_tokens)
        if 1 <= num_visual_tokens <= 256:
            return num_visual_tokens
    except (ValueError, TypeError):
        print('The num_visual_tokens is should be an integer between 1 and 256')

    raise ValueError(f"Invalid input: {num_visual_tokens}")

def get_abs_pos(abs_pos, tgt_size):
    # abs_pos: L, C
    # tgt_size: (H, W)
    # return: M, C
    src_size = int(math.sqrt(abs_pos.size(0)))
    # tgt_size = int(math.sqrt(tgt_size))
    dtype = abs_pos.dtype
    return F.interpolate(
        abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
        size=(tgt_size[0], tgt_size[1]),
        mode="bicubic",
        align_corners=False,
    ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)


# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    

    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class Resampler(nn.Module):
    """
    A 2D perceiver-resampler network with one cross attention layers by
        (grid_size**2) learnable queries and 2d sincos pos_emb
    Outputs:
        A tensor with the shape of (grid_size**2, embed_dim)
    """

    def __init__(
            self,
            grid_size,
            embed_dim,
            num_heads,
            kv_dim=None,
            norm_layer=partial(nn.LayerNorm, eps=1e-6)
    ):
        super().__init__()
        self.num_queries = grid_size ** 2
        self.embed_dim = embed_dim
        self.num_heads = num_heads

        self.pos_embed = nn.Parameter(
            torch.from_numpy(get_2d_sincos_pos_embed(kv_dim, grid_size)).half()
        ).requires_grad_(False)
        
        self.query = nn.Parameter(torch.zeros(self.num_queries, kv_dim))
        trunc_normal_(self.query, std=.02)

        self.attn = nn.MultiheadAttention(kv_dim, num_heads)
        
        self.ln_q = norm_layer(kv_dim)
        self.ln_k = norm_layer(kv_dim)
        self.ln_v = norm_layer(kv_dim)

        # self.ln_post = norm_layer(kv_dim)
        self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(kv_dim, embed_dim))

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x, num_visual_tokens=256, tgt_size=(24,24), attn_mask=None):
        pos_embed = get_abs_pos(self.pos_embed, tgt_size)

        x = (x).permute(1, 0, 2)
        
        N = x.shape[1]

        matry_n = get_matry_n(num_visual_tokens)
        #print("number of visual tokens is:",matry_n)    
        q = (self.query[:matry_n])
    
        q = self._repeat(q, N) 

        out = self.attn(
            self.ln_q(q + self.pos_embed[:matry_n].unsqueeze(1)),
            self.ln_k(self._repeat(pos_embed, N)),
            self.ln_v(x),
            attn_mask=attn_mask)[0]

        x = out.permute(1, 0, 2)

        x = x @ self.proj
        return x

    def _repeat(self, query, N: int):
        return query.unsqueeze(1).repeat(1, N, 1)