File size: 9,329 Bytes
f315fcf
 
 
ee0e203
f315fcf
 
 
7baef9b
 
0735709
 
 
 
 
 
 
1abd8a4
 
f315fcf
ee0e203
 
 
 
 
 
 
 
f315fcf
 
 
 
 
 
 
 
 
e58b4b3
f315fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0735709
 
7baef9b
 
7b92f0d
f315fcf
 
 
 
 
 
 
 
 
 
 
 
6cb21ba
7baef9b
f315fcf
ee0e203
1abd8a4
f315fcf
 
 
 
 
 
6cb21ba
 
 
 
 
 
 
 
 
 
f315fcf
6cb21ba
 
 
 
 
 
 
 
 
 
f315fcf
6cb21ba
 
 
 
 
 
 
 
f315fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bbb21f
cab3107
f315fcf
 
 
 
 
bf58e82
97c71c7
f315fcf
7b92f0d
 
18afa9d
 
7b92f0d
 
18afa9d
7b92f0d
c80ce81
19db9e7
f315fcf
19db9e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import gradio as gr
import random
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelWithLMHead
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from itertools import chain

import os 

import tempfile
from typing import Optional
from TTS.config import load_config
import numpy as np
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer

#emotion_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
#emotion_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-emotion")

def get_emotion(text):
  input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
  output = model.generate(input_ids=input_ids,max_length=2)
  dec = [tokenizer.decode(ids) for ids in output]
  label = dec[0]
  return label.split()[1]

    
config = AutoConfig.from_pretrained('gorkemgoknar/gpt2chatbotenglish')
model = GPT2LMHeadModel.from_pretrained('gorkemgoknar/gpt2chatbotenglish', config=config)

tokenizer = GPT2Tokenizer.from_pretrained('gorkemgoknar/gpt2chatbotenglish')
tokenizer.model_max_length = 1024

#Dynamic Temperature 
#See experiment https://www.linkedin.com/pulse/ai-goes-job-interview-g%25C3%25B6rkem-g%25C3%25B6knar

base_temperature = 1.2
dynamic_temperature_range = 0.15

rand_range = random.uniform(-1 * dynamic_temperature_range , dynamic_temperature_range )
temperature = base_temperature  + rand_range

SPECIAL_TOKENS = ["<bos>", "<eos>", "<speaker1>", "<speaker2>", "<pad>"]

#See document for experiment https://www.linkedin.com/pulse/ai-goes-job-interview-g%C3%B6rkem-g%C3%B6knar/

def get_chat_response(name,history=[], input_txt = "Hello , what is your name?"):
  
  ai_history = history.copy()

  #ai_history.append(input_txt)
  ai_history_e = [tokenizer.encode(e) for e in ai_history]

  personality = "My name is " + name

  bos, eos, speaker1, speaker2 = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[:-1])
  
  #persona first, history next, input text must be at the end
  #[[bos, persona] , [history] , [input]]
  sequence = [[bos]  + tokenizer.encode(personality)] + ai_history_e  + [tokenizer.encode(input_txt)]
  ##[[bos, persona] , [speaker1 .., speakser2 .., speaker1 ... speaker2 ... , [input]]
  sequence = [sequence[0]] + [[speaker2 if (len(sequence)-i) % 2 else speaker1] + s for i, s in enumerate(sequence[1:])]
  
  sequence = list(chain(*sequence))

  #bot_input_ids = tokenizer.encode(personality + tokenizer.eos_token + input_txt + tokenizer.eos_token  , return_tensors='pt')
  sequence_len = len(sequence)

  #optimum response and speed
  chat_history_ids = model.generate(
          torch.tensor(sequence).unsqueeze(0), max_length=50,
          pad_token_id=tokenizer.eos_token_id,  
          no_repeat_ngram_size=3,       
          do_sample=True, 
          top_k=60, 
          top_p=0.8,
          temperature = 1.3
      )
  out_str = tokenizer.decode(chat_history_ids[0][sequence_len:],  skip_special_tokens=True)
  #out_str = tokenizer.decode(chat_history_ids[:, sequence.shape[-1]:][0], skip_special_tokens=False)
  return out_str
  
##you can use anyone from below
'''
| Macleod | Moran | Brenda | Ramirez | Peter Parker | Quentin Beck | Andy 
| Red | Norton | Willard | Chief | Chef | Kilgore | Kurtz | Westley | Buttercup 
| Vizzini | Fezzik | Inigo | Man In Black | Taylor | Zira | Zaius | Cornelius 
| Bud | Lindsey | Hippy | Erin | Ed | George | Donna | Trinity | Agent Smith 
| Morpheus | Neo | Tank | Meryl | Truman | Marlon | Christof | Stromboli | Bumstead 
| Schreber | Walker | Korben | Cornelius | Loc Rhod | Anakin | Obi-Wan | Palpatine 
| Padme | Superman | Luthor | Dude | Walter | Donny | Maude | General | Starkiller 
| Indiana | Willie | Short Round | John | Sarah | Terminator | Miller | Sarge | Reiben 
| Jackson | Upham | Chuckie | Will | Lambeau | Sean | Skylar | Saavik | Spock 
| Kirk | Bones | Khan | Kirk | Spock | Sybok | Scotty | Bourne | Pamela | Abbott 
| Nicky | Marshall | Korshunov | Troy | Vig | Archie Gates | Doc | Interrogator 
| Ellie | Ted | Peter | Drumlin | Joss | Macready | Childs | Nicholas | Conrad 
| Feingold | Christine | Adam | Barbara | Delia | Lydia | Cathy | Charles | Otho 
| Schaefer | Han | Luke | Leia | Threepio | Vader | Yoda | Lando | Elaine | Striker 
| Dr. Rumack | Kramer | David | Saavik | Kirk | Kruge | Holden | Deckard | Rachael 
| Batty | Sebastian | Sam | Frodo | Pippin | Gandalf | Kay | Edwards | Laurel 
| Edgar | Zed | Jay | Malloy | Plissken | Steve Rogers | Tony Stark | Scott Lang 
| Bruce Banner | Bruce | Edward | Two-Face | Batman | Chase | Alfred | Dick 
| Riddler | Din Djarin | Greef Karga | Kuiil | Ig-11 | Cara Dune | Peli Motto 
| Toro Calican | Ripley | Meredith | Dickie | Marge | Peter | Lambert | Kane 
| Dallas | Ripley | Ash | Parker | Threepio | Luke | Leia | Ben | Han | Common Bob 
| Common Alice | Jack | Tyler | Marla | Dana | Stantz | Venkman | Spengler | Louis 
| Fry | Johns | Riddick | Kirk | Decker | Spock | "Ilia | Indy | Belloq | Marion 
| Brother | Allnut | Rose | Qui-Gon | Jar Jar
'''

MODEL_NAME= "tts_models/multilingual/multi-dataset/your_tts"



def greet(character,your_voice,message,history):
  
  #gradios set_state/get_state had problems on embedded html!
  history = history or {"character": character, "message_history" : [] }
  #gradios set_state/get_state does not persist session for now using global
  #global history
  
  if history["character"] != character:
    #switching character
    history = {"character": character, "message_history" : [] }


  response = get_chat_response(character,history=history["message_history"],input_txt=message)
  os.system('tts --text "'+response+'" --model_name tts_models/multilingual/multi-dataset/your_tts --speaker_wav '+your_voice+' --language_idx "en"') 

  history["message_history"].append((message, response))

  #emotion = get_emotion(response)
  
  html = "<div class='chatbot'>"
  for user_msg, resp_msg in history["message_history"]:
      html += f"<div class='user_msg'>You: {user_msg}</div>"
      html += f"<div class='resp_msg'>{character}: {resp_msg}</div>"
  html += "</div>"

  return html,history,"tts_output.wav"
  

def greet_textonly(character,message,history):
  
  #gradios set_state/get_state had problems on embedded html!
  history = history or {"character": character, "message_history" : [] }
  #gradios set_state/get_state does not persist session for now using global
  #global history
  
  if history["character"] != character:
    #switching character
    history = {"character": character, "message_history" : [] }


  response = get_chat_response(character,history=history["message_history"],input_txt=message)
 
  history["message_history"].append((message, response))

  #emotion = get_emotion(response)
  
  html = "<div class='chatbot'>"
  for user_msg, resp_msg in history["message_history"]:
      html += f"<div class='user_msg'>You: {user_msg}</div>"
      html += f"<div class='resp_msg'>{character}: {resp_msg}</div>"
  html += "</div>"

  return html,history


personality_choices = ["Gandalf", "Riddick", "Macleod", "Morpheus", "Neo","Spock","Vader","Indy"]

examples= ["Gandalf", "What is your name?"]

css="""
    .chatbox {display:flex;flex-direction:column}
    .user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
    .user_msg {background-color:cornflowerblue;color:white;align-self:start}
    .resp_msg {background-color:lightgray;align-self:self-end}
"""


#some selected ones are in for demo use
personality_choices = ["Gandalf", "Riddick", "Macleod", "Morpheus", "Neo","Spock","Vader","Indy", "Ig-11","Threepio","Tony Stark","Batman","Vizzini"]
title = "Movie Chatbot with Coqui YourTTS"
description = "Chat with your favorite movie characters, making characters voice like you. Test it out in metayazar.com/chatbot for more movie/character options. See Coqui Space for more TTS models https://huggingface.co/spaces/coqui/CoquiTTS"
article = "<p style='text-align: center'><a href='https://www.linkedin.com/pulse/ai-goes-job-interview-g%C3%B6rkem-g%C3%B6knar/' target='_blank'>AI Goes to Job Interview</a> | <a href='https://www.metayazar.com/' target='_blank'>Metayazar AI Writer</a>  |<a href='https://www.linkedin.com/in/goknar/' target='_blank'>Görkem Göknar</a></p>"

#History not implemented in this demo, use metayazar.com/chatbot for a movie and character dropdown chat interface
##interface = gr.Interface(fn=greet, inputs=[gr.inputs.Dropdown(personality_choices) ,"text"], title=title, description=description, outputs="text")

examples=[['Gandalf','dragon.wav','Who are you sir?',{}]]

history =   {"character": "None", "message_history" : [] }

interface_mic= gr.Interface(fn=greet, 
                        inputs=[gr.inputs.Dropdown(personality_choices),
                                gr.inputs.Audio(source="microphone", type="filepath") ,
                                "text", 
                                "state"], 
                        outputs=["html","state",gr.outputs.Audio(type="file")],      
                        css=css, title=title, description=description,article=article )

# appinterface = gr.TabbedInterface([interface_mic, interface_file, interface_text], ["Chat with Record", "Chat with File Upload", "Chat Text only"])      
if __name__ == "__main__":
    interface_mic.launch()