Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,17 +6,24 @@ from gtts import gTTS
|
|
6 |
from transformers import pipeline
|
7 |
from huggingface_hub import InferenceClient
|
8 |
|
|
|
9 |
ASR_MODEL_NAME = "openai/whisper-small"
|
10 |
LLM_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
11 |
|
|
|
12 |
system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant, and you respond with one to two sentences. [/INST] Hello there! I'm Friday, how can I help you?</s>"""
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
|
|
16 |
client = InferenceClient(LLM_MODEL_NAME)
|
17 |
|
|
|
18 |
device = 0 if torch.cuda.is_available() else "cpu"
|
19 |
|
|
|
20 |
pipe = pipeline(
|
21 |
task="automatic-speech-recognition",
|
22 |
model=ASR_MODEL_NAME,
|
@@ -44,7 +51,9 @@ def generate(instruct_history, temperature=0.1, max_new_tokens=128, top_p=0.95,
|
|
44 |
return output
|
45 |
|
46 |
@spaces.GPU(duration=60)
|
47 |
-
def transcribe(audio
|
|
|
|
|
48 |
sr, y = audio
|
49 |
y = y.astype(np.float32)
|
50 |
y /= np.max(np.abs(y))
|
@@ -53,27 +62,25 @@ def transcribe(audio, instruct_history=instruct_history):
|
|
53 |
transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
|
54 |
|
55 |
# Append user input to history
|
56 |
-
formatted_history
|
57 |
-
instruct_history += f"
|
58 |
|
59 |
# Generate LLM response
|
60 |
llm_response = generate(instruct_history)
|
61 |
|
62 |
# Append AI response to history
|
63 |
-
instruct_history += f"
|
64 |
-
formatted_history += f"
|
65 |
|
66 |
# Convert AI response to audio
|
67 |
audio_response = gTTS(llm_response)
|
68 |
audio_response.save("response.mp3")
|
69 |
|
70 |
-
#
|
71 |
-
|
72 |
-
|
73 |
-
return "response.mp3", full_history
|
74 |
|
75 |
with gr.Blocks() as demo:
|
76 |
-
gr.HTML("<center><h1>Friday: AI Virtual Assistant
|
77 |
|
78 |
with gr.Row():
|
79 |
audio_input = gr.Audio(label="Human", sources="microphone")
|
|
|
6 |
from transformers import pipeline
|
7 |
from huggingface_hub import InferenceClient
|
8 |
|
9 |
+
# Model names
|
10 |
ASR_MODEL_NAME = "openai/whisper-small"
|
11 |
LLM_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
12 |
|
13 |
+
# Initial system prompt
|
14 |
system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant, and you respond with one to two sentences. [/INST] Hello there! I'm Friday, how can I help you?</s>"""
|
15 |
|
16 |
+
# Global variables for history
|
17 |
+
instruct_history = system_prompt
|
18 |
+
formatted_history = ""
|
19 |
|
20 |
+
# Create inference client for text generation
|
21 |
client = InferenceClient(LLM_MODEL_NAME)
|
22 |
|
23 |
+
# Set device for ASR pipeline
|
24 |
device = 0 if torch.cuda.is_available() else "cpu"
|
25 |
|
26 |
+
# ASR pipeline
|
27 |
pipe = pipeline(
|
28 |
task="automatic-speech-recognition",
|
29 |
model=ASR_MODEL_NAME,
|
|
|
51 |
return output
|
52 |
|
53 |
@spaces.GPU(duration=60)
|
54 |
+
def transcribe(audio):
|
55 |
+
global instruct_history, formatted_history
|
56 |
+
|
57 |
sr, y = audio
|
58 |
y = y.astype(np.float32)
|
59 |
y /= np.max(np.abs(y))
|
|
|
62 |
transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
|
63 |
|
64 |
# Append user input to history
|
65 |
+
formatted_history += f"π Human: {transcribed_user_audio}\n\n"
|
66 |
+
instruct_history += f"<s>[INST] {transcribed_user_audio} [/INST] "
|
67 |
|
68 |
# Generate LLM response
|
69 |
llm_response = generate(instruct_history)
|
70 |
|
71 |
# Append AI response to history
|
72 |
+
instruct_history += f" {llm_response}</s>"
|
73 |
+
formatted_history += f"π€ Friday: {llm_response}\n\n"
|
74 |
|
75 |
# Convert AI response to audio
|
76 |
audio_response = gTTS(llm_response)
|
77 |
audio_response.save("response.mp3")
|
78 |
|
79 |
+
# Return the full conversation history
|
80 |
+
return "response.mp3", formatted_history
|
|
|
|
|
81 |
|
82 |
with gr.Blocks() as demo:
|
83 |
+
gr.HTML("<center><h1>Friday: AI Virtual Assistant π€</h1><center>")
|
84 |
|
85 |
with gr.Row():
|
86 |
audio_input = gr.Audio(label="Human", sources="microphone")
|