gospacedev commited on
Commit
6ee0077
Β·
verified Β·
1 Parent(s): 555e6b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -14
app.py CHANGED
@@ -13,9 +13,9 @@ LLM_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
13
  # Initial system prompt
14
  system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant, and you respond with one to two sentences. [/INST] Hello there! I'm Friday, how can I help you?</s>"""
15
 
16
- # Global variables for history
17
- instruct_history = system_prompt
18
- formatted_history = ""
19
 
20
  # Create inference client for text generation
21
  client = InferenceClient(LLM_MODEL_NAME)
@@ -51,9 +51,7 @@ def generate(instruct_history, temperature=0.1, max_new_tokens=128, top_p=0.95,
51
  return output
52
 
53
  @spaces.GPU(duration=60)
54
- def transcribe(audio):
55
- global instruct_history, formatted_history
56
-
57
  sr, y = audio
58
  y = y.astype(np.float32)
59
  y /= np.max(np.abs(y))
@@ -62,7 +60,7 @@ def transcribe(audio):
62
  transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
63
 
64
  # Append user input to history
65
- formatted_history += f"πŸ˜ƒ Human: {transcribed_user_audio}\n\n"
66
  instruct_history += f"<s>[INST] {transcribed_user_audio} [/INST] "
67
 
68
  # Generate LLM response
@@ -70,19 +68,21 @@ def transcribe(audio):
70
 
71
  # Append AI response to history
72
  instruct_history += f" {llm_response}</s>"
73
- formatted_history += f"πŸ€– Friday: {llm_response}\n\n"
74
 
75
  # Convert AI response to audio
76
  audio_response = gTTS(llm_response)
77
  audio_response.save("response.mp3")
78
 
79
- print("Formatted History: ", formatted_history)
80
-
81
- # Return the full conversation history
82
- return "response.mp3", formatted_history
83
 
84
  with gr.Blocks() as demo:
85
- gr.HTML("<center><h1>Friday: AI Virtual Assistant πŸ€–</h1><center>")
 
 
 
 
86
 
87
  with gr.Row():
88
  audio_input = gr.Audio(label="Human", sources="microphone")
@@ -93,7 +93,12 @@ with gr.Blocks() as demo:
93
  # Textbox to display the full conversation history
94
  transcription_box = gr.Textbox(label="Transcription", lines=10, placeholder="Conversation History...")
95
 
96
- transcribe_btn.click(fn=transcribe, inputs=[audio_input], outputs=[output_audio, transcription_box])
 
 
 
 
 
97
 
98
  if __name__ == "__main__":
99
  demo.queue()
 
13
  # Initial system prompt
14
  system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant, and you respond with one to two sentences. [/INST] Hello there! I'm Friday, how can I help you?</s>"""
15
 
16
+ # Global variables for initial history
17
+ initial_instruct_history = system_prompt
18
+ initial_formatted_history = ""
19
 
20
  # Create inference client for text generation
21
  client = InferenceClient(LLM_MODEL_NAME)
 
51
  return output
52
 
53
  @spaces.GPU(duration=60)
54
+ def transcribe(audio, instruct_history, formatted_history):
 
 
55
  sr, y = audio
56
  y = y.astype(np.float32)
57
  y /= np.max(np.abs(y))
 
60
  transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
61
 
62
  # Append user input to history
63
+ formatted_history += f"Human: {transcribed_user_audio}\n\n"
64
  instruct_history += f"<s>[INST] {transcribed_user_audio} [/INST] "
65
 
66
  # Generate LLM response
 
68
 
69
  # Append AI response to history
70
  instruct_history += f" {llm_response}</s>"
71
+ formatted_history += f"Friday: {llm_response}\n\n"
72
 
73
  # Convert AI response to audio
74
  audio_response = gTTS(llm_response)
75
  audio_response.save("response.mp3")
76
 
77
+ # Return the updated history and audio
78
+ return "response.mp3", formatted_history, instruct_history
 
 
79
 
80
  with gr.Blocks() as demo:
81
+ gr.HTML("<center><h1>Friday: AI Virtual Assistant</h1><center>")
82
+
83
+ # Initialize state
84
+ instruct_state = gr.State(value=initial_instruct_history)
85
+ formatted_state = gr.State(value=initial_formatted_history)
86
 
87
  with gr.Row():
88
  audio_input = gr.Audio(label="Human", sources="microphone")
 
93
  # Textbox to display the full conversation history
94
  transcription_box = gr.Textbox(label="Transcription", lines=10, placeholder="Conversation History...")
95
 
96
+ # Pass states to the transcribe function and update them after each click
97
+ transcribe_btn.click(
98
+ fn=transcribe,
99
+ inputs=[audio_input, instruct_state, formatted_state],
100
+ outputs=[output_audio, transcription_box, instruct_state, formatted_state]
101
+ )
102
 
103
  if __name__ == "__main__":
104
  demo.queue()