Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import spaces
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from gtts import gTTS
|
6 |
+
from transformers import pipeline
|
7 |
+
from huggingface_hub import InferenceClient
|
8 |
+
|
9 |
+
|
10 |
+
ASR_MODEL_NAME = "openai/whisper-small"
|
11 |
+
NLP_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
12 |
+
system_prompt = """"<s> [INST] You are Friday a helpful and conversational assistant. [/INST]"""
|
13 |
+
|
14 |
+
client = InferenceClient(NLP_MODEL_NAME)
|
15 |
+
|
16 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
pipe = pipeline(
|
19 |
+
task="automatic-speech-recognition",
|
20 |
+
model=ASR_MODEL_NAME,
|
21 |
+
device=device,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def generate(prompt, temperature=0.1, max_new_tokens=64, top_p=0.95, repetition_penalty=1.0):
|
26 |
+
temperature = float(temperature)
|
27 |
+
if temperature < 1e-2:
|
28 |
+
temperature = 1e-2
|
29 |
+
top_p = float(top_p)
|
30 |
+
|
31 |
+
generate_kwargs = dict(
|
32 |
+
temperature=temperature,
|
33 |
+
max_new_tokens=max_new_tokens,
|
34 |
+
top_p=top_p,
|
35 |
+
repetition_penalty=repetition_penalty,
|
36 |
+
do_sample=True,
|
37 |
+
seed=42,
|
38 |
+
)
|
39 |
+
|
40 |
+
formatted_prompt = system_prompt + f""" {prompt} </s>"""
|
41 |
+
|
42 |
+
output = client.text_generation(
|
43 |
+
formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
|
44 |
+
|
45 |
+
print(output)
|
46 |
+
return output
|
47 |
+
|
48 |
+
|
49 |
+
@spaces.GPU(duration=60)
|
50 |
+
def transcribe(audio):
|
51 |
+
sr, y = audio
|
52 |
+
y = y.astype(np.float32)
|
53 |
+
y /= np.max(np.abs(y))
|
54 |
+
|
55 |
+
inputs = pipe({"sampling_rate": sr, "raw": y})["text"]
|
56 |
+
|
57 |
+
print("User transcription: ", inputs)
|
58 |
+
|
59 |
+
response = generate(inputs)
|
60 |
+
audio_response = gTTS(response)
|
61 |
+
audio_response.save("response.mp3")
|
62 |
+
|
63 |
+
print(audio_response)
|
64 |
+
|
65 |
+
return "response.mp3"
|
66 |
+
|
67 |
+
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
gr.HTML("<center><h1>Friday: AI Virtual Assistant<h1><center>")
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
audio_input = gr.Audio(label="Human", sources="microphone")
|
73 |
+
output_audio = gr.Audio(label="Friday", type="filepath",
|
74 |
+
interactive=False,
|
75 |
+
autoplay=True,
|
76 |
+
elem_classes="audio")
|
77 |
+
|
78 |
+
transcribe_btn = gr.Button("Transcribe")
|
79 |
+
transcribe_btn.click(fn=transcribe, inputs=audio_input,
|
80 |
+
outputs=output_audio)
|
81 |
+
|
82 |
+
|
83 |
+
demo.queue()
|
84 |
+
demo.launch()
|