Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,17 +6,13 @@ from gtts import gTTS
|
|
6 |
from transformers import pipeline
|
7 |
from huggingface_hub import InferenceClient
|
8 |
|
9 |
-
|
10 |
ASR_MODEL_NAME = "openai/whisper-small"
|
11 |
LLM_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
12 |
|
13 |
-
|
14 |
-
system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant and You respond with one to two sentences. [/INST] Hello there! I'm friday how can I help you?</s>"""
|
15 |
|
16 |
instruct_history = system_prompt + """"""
|
17 |
|
18 |
-
formatted_history = """"""
|
19 |
-
|
20 |
client = InferenceClient(LLM_MODEL_NAME)
|
21 |
|
22 |
device = 0 if torch.cuda.is_available() else "cpu"
|
@@ -27,7 +23,6 @@ pipe = pipeline(
|
|
27 |
device=device,
|
28 |
)
|
29 |
|
30 |
-
|
31 |
def generate(instruct_history, temperature=0.1, max_new_tokens=128, top_p=0.95, repetition_penalty=1.0):
|
32 |
temperature = float(temperature)
|
33 |
if temperature < 1e-2:
|
@@ -48,49 +43,48 @@ def generate(instruct_history, temperature=0.1, max_new_tokens=128, top_p=0.95,
|
|
48 |
|
49 |
return output
|
50 |
|
51 |
-
|
52 |
@spaces.GPU(duration=60)
|
53 |
-
def transcribe(audio, instruct_history=instruct_history
|
54 |
sr, y = audio
|
55 |
y = y.astype(np.float32)
|
56 |
y /= np.max(np.abs(y))
|
57 |
|
|
|
58 |
transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
|
59 |
|
60 |
-
|
61 |
-
|
62 |
instruct_history += f"""<s>[INST] {transcribed_user_audio} [/INST] """
|
63 |
|
|
|
64 |
llm_response = generate(instruct_history)
|
65 |
|
|
|
66 |
instruct_history += f""" {llm_response}</s>"""
|
67 |
-
|
68 |
formatted_history += f"""Friday: {llm_response}\n\n"""
|
69 |
|
|
|
70 |
audio_response = gTTS(llm_response)
|
71 |
audio_response.save("response.mp3")
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
return "response.mp3", formatted_history
|
76 |
|
|
|
77 |
|
78 |
with gr.Blocks() as demo:
|
79 |
-
gr.HTML("<center><h1>Friday: AI Virtual Assistant
|
80 |
|
81 |
with gr.Row():
|
82 |
-
audio_input = gr.Audio(label="Human",
|
83 |
-
output_audio = gr.Audio(label="Friday", type="filepath",
|
84 |
-
interactive=False,
|
85 |
-
autoplay=True,
|
86 |
-
elem_classes="audio")
|
87 |
|
88 |
transcribe_btn = gr.Button("Transcribe")
|
89 |
|
90 |
-
|
|
|
91 |
|
92 |
-
transcribe_btn.click(fn=transcribe, inputs=[audio_input],
|
93 |
-
outputs=[output_audio, transcription_box])
|
94 |
|
95 |
if __name__ == "__main__":
|
96 |
demo.queue()
|
|
|
6 |
from transformers import pipeline
|
7 |
from huggingface_hub import InferenceClient
|
8 |
|
|
|
9 |
ASR_MODEL_NAME = "openai/whisper-small"
|
10 |
LLM_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
11 |
|
12 |
+
system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant, and you respond with one to two sentences. [/INST] Hello there! I'm Friday, how can I help you?</s>"""
|
|
|
13 |
|
14 |
instruct_history = system_prompt + """"""
|
15 |
|
|
|
|
|
16 |
client = InferenceClient(LLM_MODEL_NAME)
|
17 |
|
18 |
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
23 |
device=device,
|
24 |
)
|
25 |
|
|
|
26 |
def generate(instruct_history, temperature=0.1, max_new_tokens=128, top_p=0.95, repetition_penalty=1.0):
|
27 |
temperature = float(temperature)
|
28 |
if temperature < 1e-2:
|
|
|
43 |
|
44 |
return output
|
45 |
|
|
|
46 |
@spaces.GPU(duration=60)
|
47 |
+
def transcribe(audio, instruct_history=instruct_history):
|
48 |
sr, y = audio
|
49 |
y = y.astype(np.float32)
|
50 |
y /= np.max(np.abs(y))
|
51 |
|
52 |
+
# Transcribe user audio
|
53 |
transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
|
54 |
|
55 |
+
# Append user input to history
|
56 |
+
formatted_history = f"""Human: {transcribed_user_audio}\n\n"""
|
57 |
instruct_history += f"""<s>[INST] {transcribed_user_audio} [/INST] """
|
58 |
|
59 |
+
# Generate LLM response
|
60 |
llm_response = generate(instruct_history)
|
61 |
|
62 |
+
# Append AI response to history
|
63 |
instruct_history += f""" {llm_response}</s>"""
|
|
|
64 |
formatted_history += f"""Friday: {llm_response}\n\n"""
|
65 |
|
66 |
+
# Convert AI response to audio
|
67 |
audio_response = gTTS(llm_response)
|
68 |
audio_response.save("response.mp3")
|
69 |
|
70 |
+
# Display the full conversation history
|
71 |
+
full_history = formatted_history
|
|
|
72 |
|
73 |
+
return "response.mp3", full_history
|
74 |
|
75 |
with gr.Blocks() as demo:
|
76 |
+
gr.HTML("<center><h1>Friday: AI Virtual Assistant</h1><center>")
|
77 |
|
78 |
with gr.Row():
|
79 |
+
audio_input = gr.Audio(label="Human", source="microphone")
|
80 |
+
output_audio = gr.Audio(label="Friday", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
|
|
|
|
|
|
|
81 |
|
82 |
transcribe_btn = gr.Button("Transcribe")
|
83 |
|
84 |
+
# Textbox to display the full conversation history
|
85 |
+
transcription_box = gr.Textbox(label="Transcription", lines=10, placeholder="Conversation History...")
|
86 |
|
87 |
+
transcribe_btn.click(fn=transcribe, inputs=[audio_input], outputs=[output_audio, transcription_box])
|
|
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
demo.queue()
|