File size: 4,086 Bytes
8d01c66
 
 
 
 
 
 
 
 
 
 
 
5433098
 
 
 
 
 
 
 
 
 
225b1a6
 
 
cd1a4ee
225b1a6
 
 
 
 
 
cd1a4ee
225b1a6
 
 
 
 
 
 
 
5433098
cd1a4ee
225b1a6
 
 
 
 
 
 
8d01c66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import streamlit as st

# Header
st.title("Gourav Gujariya's Portfolio")

# Contact Information
st.sidebar.header("Contact Information")
st.sidebar.markdown("Email: [email protected]")
st.sidebar.markdown("Phone: 9460468011")
st.sidebar.markdown("[LinkedIn](https://www.linkedin.com/in/gourav-gujariya)")
st.sidebar.markdown("[GitHub](https://github.com/gouravgujariya)")

# Links to Projects
st.sidebar.header("Projects")
project_links = {
    "Text Analysis": "https://huggingface.co/spaces/gouravgujariya/Text_analysis",
    "Scan Threat Detection": "https://huggingface.co/spaces/gouravgujariya/Scan_Threat_detection",
    "Web to JSON": "https://huggingface.co/spaces/gouravgujariya/Web_to_json"
}

for project_name, link in project_links.items():
    st.sidebar.markdown(f"[{project_name}]({link})")
import streamlit as st

# Create expandable sections
with st.expander():
    st.header("Education")
    st.subheader("Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India")
    st.write("BTech in Computer Science and Engineering")
    st.write("CGPA: 7.32")
    st.write("Year of Graduation: 2024")

with st.expander():
    st.header("Experience")
    st.subheader("Microlent Systems Pvt Ltd, Rajasthan, India (05/2023-06/2023)")
    st.write("PYTHON DEVELOPER (INTERN)")
    st.markdown("- Developed an NLP-based pipeline using Python, collaborating with a team to filter text and generate 3D objects.")
    st.markdown("- Utilized shape-based testing to improve efficiency and gained valuable experience in natural language processing and 3D object generation.")
    st.markdown("- Conducted extensive testing and model selection within the pipeline, resulting in significant time savings.")
    st.markdown("- This experience allowed for hands-on learning alongside industry professionals, enhancing Python and machine learning skills.")
    st.markdown("- Assembled and programmed a Python-based solution for 3D object generation. Solved complex challenges in text-to-3D conversion, showcasing expertise in NLP and contributing to streamlined processes.")

with st.expander():
    st.header("Personal Projects")
    st.subheader("Cloud Detection System (05/2023-06/2023)")
    st.markdown("- Designed and engineered a cutting-edge Cloud Detection System achieving an exceptional 99% accuracy rate.")
    st.markdown("- Reduced dataset noise effectively through the implementation of OpenCV image enhancement techniques.")
    st.markdown("- Efficiently annotated datasets using Roboflow techniques, streamlining data processing.")
    st.markdown("- Led valuable contributions to atmospheric science by analyzing cloud characteristics, enhancing understanding in scattering, absorption, and infrared radiation.")
    st.markdown("- Developed a scalable and reliable Cloud Detection System that monitors hundreds of thousands of images per day.")

st.subheader("Runtime Prediction Model (05/2022-12/2022)")
st.markdown("- Designed and engineered a predictive model for algorithm time complexity analysis, leveraging skills in machine learning.")
st.markdown("- Developed, trained, and fine-tuned 9 machine learning models, achieving a remarkable accuracy score of 74.64%.")
st.markdown("- Evaluated 7 ensemble algorithms and 3 baseline models, resulting in a 15% accuracy improvement.")
st.markdown("- Implemented solutions for efficient algorithm optimization, providing valuable insights to enhance processes.")

# Achievements
st.header("Achievements")
st.markdown("Kaggle: Dataset EXPERT and Notebook EXPERT")
st.markdown("COMMUNITY: Google Dev Student Club active member")

# Technical Skills
st.header("Technical Skills")
st.subheader("Languages")
st.write("Python, C++")
st.subheader("Tools")
st.write("Machine learning, Deep learning, Natural language processing, Computer vision, Tensorflow")
st.subheader("Technologies/Frameworks")
st.write("Streamlit, Keras, OpenCV, NLTK, YOLO")
st.subheader("Basic")
st.write("Object-oriented programming, RDBMS (SQL), Operating Systems")

# Add a footer or any other additional content if needed