Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,108 @@
|
|
1 |
-
import
|
2 |
-
import threading
|
3 |
-
import os
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
elif selected_model == "Model 2 (Face Projection)":
|
20 |
-
model = model2
|
21 |
-
else:
|
22 |
-
return ["Invalid model selection."] * 3
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
if stop_event.is_set():
|
27 |
-
return ["Image generation stopped by user."] * 3
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
results.append(result)
|
32 |
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
def
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
generate_button = gr.Button("Generate 3 Images 🎨")
|
54 |
-
stop_button = gr.Button("Stop Image Generation")
|
55 |
-
|
56 |
-
with gr.Row():
|
57 |
-
output1 = gr.Image(label="Generated Image 1")
|
58 |
-
output2 = gr.Image(label="Generated Image 2")
|
59 |
-
output3 = gr.Image(label="Generated Image 3")
|
60 |
-
|
61 |
-
generate_button.click(generate_images, inputs=[text_input, model_selector], outputs=[output1, output2, output3])
|
62 |
-
stop_button.click(stop_generation, inputs=[], outputs=[output1, output2, output3])
|
63 |
|
64 |
-
|
|
|
|
1 |
+
import numpy as np
|
|
|
|
|
2 |
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchvision.transforms.functional import normalize
|
5 |
+
import gradio as gr
|
6 |
+
from gradio_imageslider import ImageSlider
|
7 |
+
from briarmbg import BriaRMBG
|
8 |
+
import PIL
|
9 |
+
from PIL import Image
|
10 |
+
from typing import Tuple
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
# Load the model
|
14 |
+
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
net.to(device)
|
17 |
+
net.eval()
|
18 |
+
|
19 |
+
def resize_image(image):
|
20 |
+
image = image.convert('RGB')
|
21 |
+
model_input_size = (1024, 1024)
|
22 |
+
image = image.resize(model_input_size, Image.BILINEAR)
|
23 |
+
return image
|
24 |
+
|
25 |
+
def process_image(image):
|
26 |
+
# prepare input
|
27 |
+
orig_image = Image.fromarray(image)
|
28 |
+
w, h = orig_im_size = orig_image.size
|
29 |
+
image = resize_image(orig_image)
|
30 |
+
im_np = np.array(image)
|
31 |
+
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
32 |
+
im_tensor = torch.unsqueeze(im_tensor, 0)
|
33 |
+
im_tensor = torch.divide(im_tensor, 255.0)
|
34 |
+
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
|
35 |
+
if torch.cuda.is_available():
|
36 |
+
im_tensor = im_tensor.cuda()
|
37 |
+
|
38 |
+
# inference
|
39 |
+
result = net(im_tensor)
|
40 |
+
# post process
|
41 |
+
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
|
42 |
+
ma = torch.max(result)
|
43 |
+
mi = torch.min(result)
|
44 |
+
result = (result - mi) / (ma - mi)
|
45 |
+
# image to pil
|
46 |
+
result_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
47 |
+
pil_mask = Image.fromarray(np.squeeze(result_array))
|
48 |
+
# add the mask on the original image as alpha channel
|
49 |
+
new_im = orig_image.copy()
|
50 |
+
new_im.putalpha(pil_mask)
|
51 |
+
return new_im
|
52 |
|
53 |
+
def process_video(video_path):
|
54 |
+
cap = cv2.VideoCapture(video_path)
|
55 |
+
if not cap.isOpened():
|
56 |
+
raise ValueError("Error opening video file")
|
57 |
|
58 |
+
# Get video properties
|
59 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
60 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
61 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
62 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
63 |
+
out = cv2.VideoWriter('output.mp4', fourcc, fps, (width, height), isColor=True)
|
64 |
|
65 |
+
while cap.isOpened():
|
66 |
+
ret, frame = cap.read()
|
67 |
+
if not ret:
|
68 |
+
break
|
69 |
|
70 |
+
# Convert frame to PIL Image
|
71 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
72 |
+
pil_image = Image.fromarray(frame)
|
73 |
|
74 |
+
# Process the frame
|
75 |
+
processed_image = process_image(frame)
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Convert back to OpenCV format
|
78 |
+
processed_frame = cv2.cvtColor(np.array(processed_image), cv2.COLOR_RGBA2BGRA)
|
|
|
|
|
79 |
|
80 |
+
# Write the frame to the output video
|
81 |
+
out.write(processed_frame)
|
|
|
82 |
|
83 |
+
cap.release()
|
84 |
+
out.release()
|
85 |
+
return 'output.mp4'
|
86 |
|
87 |
+
def process_input(input_data):
|
88 |
+
if isinstance(input_data, str): # Assuming video path is provided as a string
|
89 |
+
return process_video(input_data)
|
90 |
+
else: # Assuming image is provided as numpy array
|
91 |
+
return process_image(input_data)
|
92 |
|
93 |
+
gr.Markdown("## BRIA RMBG 1.4")
|
94 |
+
gr.HTML('''
|
95 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
96 |
+
This is a demo for BRIA RMBG 1.4 that using
|
97 |
+
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
98 |
+
</p>
|
99 |
+
''')
|
100 |
+
title = "Background Removal"
|
101 |
+
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
|
102 |
+
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>. To purchase a commercial license, simply click <a href='https://go.bria.ai/3ZCBTLH' target='_blank'><b>Here</b></a>. <br>
|
103 |
+
"""
|
104 |
+
examples = [['./input.jpg'],]
|
105 |
+
demo = gr.Interface(fn=process_input, inputs="file", outputs="playable_video", examples=examples, title=title, description=description)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
if __name__ == "__main__":
|
108 |
+
demo.launch(share=False)
|