gouravgujariya commited on
Commit
2f4182d
·
verified ·
1 Parent(s): fd7a33e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -52
app.py CHANGED
@@ -1,64 +1,108 @@
1
- import gradio as gr
2
- import threading
3
- import os
4
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- os.environ["OMP_NUM_THREADS"] = str(os.cpu_count())
7
- torch.set_num_threads(os.cpu_count())
 
 
8
 
9
- model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
10
- model2 = gr.load("models/Purz/face-projection")
 
 
 
 
11
 
12
- stop_event = threading.Event()
 
 
 
13
 
14
- def generate_images(text, selected_model):
15
- stop_event.clear()
 
16
 
17
- if selected_model == "Model 1 (Turbo Realism)":
18
- model = model1
19
- elif selected_model == "Model 2 (Face Projection)":
20
- model = model2
21
- else:
22
- return ["Invalid model selection."] * 3
23
 
24
- results = []
25
- for i in range(3):
26
- if stop_event.is_set():
27
- return ["Image generation stopped by user."] * 3
28
 
29
- modified_text = f"{text} variation {i+1}"
30
- result = model(modified_text)
31
- results.append(result)
32
 
33
- return results
 
 
34
 
35
- def stop_generation():
36
- """Stops the ongoing image generation by setting the stop_event flag."""
37
- stop_event.set()
38
- return ["Generation stopped."] * 3
 
39
 
40
- with gr.Blocks() as interface:#...
41
- gr.Markdown(
42
- "### Sorry for the inconvenience. The Space is currently running on the CPU, which might affect performance. We appreciate your understanding."
43
- )
44
-
45
- text_input = gr.Textbox(label="Type here your imagination:", placeholder="Type your prompt...")
46
- model_selector = gr.Radio(
47
- ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
48
- label="Select Model",
49
- value="Model 1 (Turbo Realism)"
50
- )
51
-
52
- with gr.Row():
53
- generate_button = gr.Button("Generate 3 Images 🎨")
54
- stop_button = gr.Button("Stop Image Generation")
55
-
56
- with gr.Row():
57
- output1 = gr.Image(label="Generated Image 1")
58
- output2 = gr.Image(label="Generated Image 2")
59
- output3 = gr.Image(label="Generated Image 3")
60
-
61
- generate_button.click(generate_images, inputs=[text_input, model_selector], outputs=[output1, output2, output3])
62
- stop_button.click(stop_generation, inputs=[], outputs=[output1, output2, output3])
63
 
64
- interface.launch()
 
 
1
+ import numpy as np
 
 
2
  import torch
3
+ import torch.nn.functional as F
4
+ from torchvision.transforms.functional import normalize
5
+ import gradio as gr
6
+ from gradio_imageslider import ImageSlider
7
+ from briarmbg import BriaRMBG
8
+ import PIL
9
+ from PIL import Image
10
+ from typing import Tuple
11
+ import cv2
12
+
13
+ # Load the model
14
+ net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
15
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
+ net.to(device)
17
+ net.eval()
18
+
19
+ def resize_image(image):
20
+ image = image.convert('RGB')
21
+ model_input_size = (1024, 1024)
22
+ image = image.resize(model_input_size, Image.BILINEAR)
23
+ return image
24
+
25
+ def process_image(image):
26
+ # prepare input
27
+ orig_image = Image.fromarray(image)
28
+ w, h = orig_im_size = orig_image.size
29
+ image = resize_image(orig_image)
30
+ im_np = np.array(image)
31
+ im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
32
+ im_tensor = torch.unsqueeze(im_tensor, 0)
33
+ im_tensor = torch.divide(im_tensor, 255.0)
34
+ im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
35
+ if torch.cuda.is_available():
36
+ im_tensor = im_tensor.cuda()
37
+
38
+ # inference
39
+ result = net(im_tensor)
40
+ # post process
41
+ result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
42
+ ma = torch.max(result)
43
+ mi = torch.min(result)
44
+ result = (result - mi) / (ma - mi)
45
+ # image to pil
46
+ result_array = (result * 255).cpu().data.numpy().astype(np.uint8)
47
+ pil_mask = Image.fromarray(np.squeeze(result_array))
48
+ # add the mask on the original image as alpha channel
49
+ new_im = orig_image.copy()
50
+ new_im.putalpha(pil_mask)
51
+ return new_im
52
 
53
+ def process_video(video_path):
54
+ cap = cv2.VideoCapture(video_path)
55
+ if not cap.isOpened():
56
+ raise ValueError("Error opening video file")
57
 
58
+ # Get video properties
59
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
60
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
61
+ fps = cap.get(cv2.CAP_PROP_FPS)
62
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
63
+ out = cv2.VideoWriter('output.mp4', fourcc, fps, (width, height), isColor=True)
64
 
65
+ while cap.isOpened():
66
+ ret, frame = cap.read()
67
+ if not ret:
68
+ break
69
 
70
+ # Convert frame to PIL Image
71
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
72
+ pil_image = Image.fromarray(frame)
73
 
74
+ # Process the frame
75
+ processed_image = process_image(frame)
 
 
 
 
76
 
77
+ # Convert back to OpenCV format
78
+ processed_frame = cv2.cvtColor(np.array(processed_image), cv2.COLOR_RGBA2BGRA)
 
 
79
 
80
+ # Write the frame to the output video
81
+ out.write(processed_frame)
 
82
 
83
+ cap.release()
84
+ out.release()
85
+ return 'output.mp4'
86
 
87
+ def process_input(input_data):
88
+ if isinstance(input_data, str): # Assuming video path is provided as a string
89
+ return process_video(input_data)
90
+ else: # Assuming image is provided as numpy array
91
+ return process_image(input_data)
92
 
93
+ gr.Markdown("## BRIA RMBG 1.4")
94
+ gr.HTML('''
95
+ <p style="margin-bottom: 10px; font-size: 94%">
96
+ This is a demo for BRIA RMBG 1.4 that using
97
+ <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
98
+ </p>
99
+ ''')
100
+ title = "Background Removal"
101
+ description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
102
+ For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>. To purchase a commercial license, simply click <a href='https://go.bria.ai/3ZCBTLH' target='_blank'><b>Here</b></a>. <br>
103
+ """
104
+ examples = [['./input.jpg'],]
105
+ demo = gr.Interface(fn=process_input, inputs="file", outputs="playable_video", examples=examples, title=title, description=description)
 
 
 
 
 
 
 
 
 
 
106
 
107
+ if __name__ == "__main__":
108
+ demo.launch(share=False)