Spaces:
Sleeping
Sleeping
File size: 1,048 Bytes
026aeba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from data.load_dataset import load_data
from retriever.chunk_documents import chunk_documents
from retriever.embed_documents import embed_documents
from retriever.retrieve_documents import retrieve_top_k_documents
from generator.initialize_llm import initialize_llm
from generator.generate_response import generate_response
def main():
# Load the dataset
dataset = load_data()
# Chunk the dataset
documents = chunk_documents(dataset)
# Embed the documents
vector_store = embed_documents(documents)
# Initialize the LLM
llm = initialize_llm()
# Sample question
sample_question = dataset[0]['question']
# Retrieve relevant documents
relevant_docs = retrieve_top_k_documents(vector_store, sample_question, top_k=5)
# Generate a response
response, source_docs = generate_response(llm, vector_store, sample_question)
# Print the response
print(f"Response: {response}")
print(f"Source Documents: {source_docs}")
if __name__ == "__main__":
main() |