realtime-rag-pipeline / generator /compute_rmse_auc_roc_metrics.py
Gourisankar Padihary
Code rafactored
e384879
raw
history blame
4.46 kB
from sklearn.metrics import roc_auc_score, root_mean_squared_error
from generator.generate_metrics import generate_metrics
import logging
def compute_rmse_auc_roc_metrics(llm, dataset, vector_store, num_question):
# Lists to accumulate ground truths and predictions for AUC-ROC computation
all_ground_truth_relevance = []
all_predicted_relevance = []
all_ground_truth_utilization = []
all_predicted_utilization = []
all_ground_truth_adherence = []
all_predicted_adherence = []
# To store RMSE scores for each question
relevance_scores = []
utilization_scores = []
adherence_scores = []
# For each question in dataset get the metrics
for i, document in enumerate(dataset):
# Extract ground truth metrics from dataset
ground_truth_relevance = dataset[i]['relevance_score']
ground_truth_utilization = dataset[i]['utilization_score']
ground_truth_adherence = dataset[i]['gpt3_adherence']
query = document['question']
logging.info(f'Query number: {i + 1}')
# Call the generate_metrics for each query
metrics = generate_metrics(llm, vector_store, query)
# Extract predicted metrics (ensure these are continuous if possible)
predicted_relevance = metrics['Context Relevance']
predicted_utilization = metrics['Context Utilization']
predicted_adherence = metrics['Adherence']
# === Handle Continuous Inputs for RMSE ===
relevance_rmse = root_mean_squared_error([ground_truth_relevance], [predicted_relevance])
utilization_rmse = root_mean_squared_error([ground_truth_utilization], [predicted_utilization])
adherence_rmse = root_mean_squared_error([ground_truth_adherence], [predicted_adherence])
# === Handle Binary Conversion for AUC-ROC ===
binary_ground_truth_relevance = 1 if ground_truth_relevance > 0.5 else 0
#binary_predicted_relevance = 1 if predicted_relevance > 0.5 else 0
binary_ground_truth_utilization = 1 if ground_truth_utilization > 0.5 else 0
#binary_predicted_utilization = 1 if predicted_utilization > 0.5 else 0
#binary_ground_truth_adherence = 1 if ground_truth_adherence > 0.5 else 0
#binary_predicted_adherence = 1 if predicted_adherence > 0.5 else 0
# === Accumulate data for overall AUC-ROC computation ===
all_ground_truth_relevance.append(binary_ground_truth_relevance)
all_predicted_relevance.append(predicted_relevance) # Use probability-based predictions
all_ground_truth_utilization.append(binary_ground_truth_utilization)
all_predicted_utilization.append(predicted_utilization)
all_ground_truth_adherence.append(ground_truth_adherence)
all_predicted_adherence.append(predicted_adherence)
# Store RMSE scores for each question
relevance_scores.append(relevance_rmse)
utilization_scores.append(utilization_rmse)
adherence_scores.append(adherence_rmse)
if i == num_question:
break
# === Compute AUC-ROC for the Entire Dataset ===
try:
#print(f"All Ground Truth Relevance: {all_ground_truth_relevance}")
#print(f"All Predicted Relevance: {all_predicted_relevance}")
relevance_auc = roc_auc_score(all_ground_truth_relevance, all_predicted_relevance)
except ValueError:
relevance_auc = None
try:
#print(f"All Ground Truth Utilization: {all_ground_truth_utilization}")
#print(f"All Predicted Utilization: {all_predicted_utilization}")
utilization_auc = roc_auc_score(all_ground_truth_utilization, all_predicted_utilization)
except ValueError:
utilization_auc = None
try:
#print(f"All Ground Truth Adherence: {all_ground_truth_utilization}")
#print(f"All Predicted Utilization: {all_predicted_utilization}")
adherence_auc = roc_auc_score(all_ground_truth_adherence, all_predicted_adherence)
except ValueError:
adherence_auc = None
print(f"Relevance RMSE (per question): {relevance_scores}")
print(f"Utilization RMSE (per question): {utilization_scores}")
print(f"Adherence RMSE (per question): {adherence_scores}")
print(f"\nOverall Relevance AUC-ROC: {relevance_auc}")
print(f"Overall Utilization AUC-ROC: {utilization_auc}")
print(f"Overall Adherence AUC-ROC: {adherence_auc}")