|
import gradio as gr |
|
import logging |
|
from generator.compute_rmse_auc_roc_metrics import compute_rmse_auc_roc_metrics |
|
|
|
def launch_gradio(vector_store, dataset, gen_llm, val_llm): |
|
""" |
|
Launch the Gradio app with pre-initialized objects. |
|
""" |
|
def answer_question_with_metrics(query): |
|
try: |
|
logging.info(f"Processing query: {query}") |
|
|
|
|
|
from main import generate_metrics |
|
response, metrics = generate_metrics(gen_llm, val_llm, vector_store, query, 1) |
|
|
|
response_text = f"Response: {response}\n\n" |
|
metrics_text = "Metrics:\n" |
|
for key, value in metrics.items(): |
|
if key != 'response': |
|
metrics_text += f"{key}: {value}\n" |
|
|
|
return response_text, metrics_text |
|
except Exception as e: |
|
logging.error(f"Error processing query: {e}") |
|
return f"An error occurred: {e}" |
|
|
|
def compute_and_display_metrics(): |
|
try: |
|
|
|
relevance_rmse, utilization_rmse, adherence_auc = compute_rmse_auc_roc_metrics( |
|
gen_llm, val_llm, dataset, vector_store, 10 |
|
) |
|
|
|
|
|
result = ( |
|
f"Relevance RMSE Score: {relevance_rmse}\n" |
|
f"Utilization RMSE Score: {utilization_rmse}\n" |
|
f"Overall Adherence AUC-ROC: {adherence_auc}\n" |
|
) |
|
return result |
|
except Exception as e: |
|
logging.error(f"Error during metrics computation: {e}") |
|
return f"An error occurred: {e}" |
|
|
|
|
|
with gr.Blocks() as interface: |
|
interface.title = "Real Time RAG Pipeline Q&A" |
|
gr.Markdown("### Real Time RAG Pipeline Q&A") |
|
gr.Markdown("Ask a question and get a response with metrics calculated from the RAG pipeline.") |
|
|
|
with gr.Row(): |
|
query_input = gr.Textbox(label="Ask a question", placeholder="Type your query here") |
|
with gr.Row(): |
|
clear_query_button = gr.Button("Clear") |
|
submit_button = gr.Button("Submit", variant="primary") |
|
with gr.Row(): |
|
answer_output = gr.Textbox(label="Response", placeholder="Response will appear here") |
|
with gr.Row(): |
|
metrics_output = gr.Textbox(label="Metrics", placeholder="Metrics will appear here") |
|
with gr.Row(): |
|
compute_rmse_button = gr.Button("Compute RMSE & AU-ROC", variant="primary") |
|
rmse_output = gr.Textbox(label="RMSE & AU-ROC Score", placeholder="RMSE & AU-ROC score will appear here") |
|
|
|
|
|
|
|
submit_button.click(fn=answer_question_with_metrics, inputs=[query_input], outputs=[answer_output, metrics_output]) |
|
clear_query_button.click(fn=lambda: "", outputs=[query_input]) |
|
compute_rmse_button.click(fn=compute_and_display_metrics, outputs=[rmse_output]) |
|
|
|
interface.launch() |
|
|