Spaces:
Sleeping
Sleeping
Gourisankar Padihary
commited on
Commit
·
0ea6d19
1
Parent(s):
9bde774
Changes for techqa data set
Browse files- generator/generate_metrics.py +1 -1
- generator/initialize_llm.py +2 -2
- main.py +2 -2
- retriever/embed_documents.py +1 -1
generator/generate_metrics.py
CHANGED
@@ -22,7 +22,7 @@ def generate_metrics(gen_llm, val_llm, vector_store, query):
|
|
22 |
logging.info(f"Response from LLM: {response}")
|
23 |
|
24 |
# Add a sleep interval to avoid hitting the rate limit
|
25 |
-
time.sleep(
|
26 |
|
27 |
# Step 3: Extract attributes and total sentences for each query
|
28 |
logging.info(f"Extracting attributes through validation LLM")
|
|
|
22 |
logging.info(f"Response from LLM: {response}")
|
23 |
|
24 |
# Add a sleep interval to avoid hitting the rate limit
|
25 |
+
time.sleep(25) # Adjust the sleep time as needed
|
26 |
|
27 |
# Step 3: Extract attributes and total sentences for each query
|
28 |
logging.info(f"Extracting attributes through validation LLM")
|
generator/initialize_llm.py
CHANGED
@@ -2,7 +2,7 @@ import logging
|
|
2 |
import os
|
3 |
from langchain_groq import ChatGroq
|
4 |
|
5 |
-
def
|
6 |
os.environ["GROQ_API_KEY"] = "your_groq_api_key"
|
7 |
model_name = "llama3-8b-8192"
|
8 |
llm = ChatGroq(model=model_name, temperature=0.7)
|
@@ -11,7 +11,7 @@ def initialize_llm():
|
|
11 |
|
12 |
def initialize_validation_llm():
|
13 |
os.environ["GROQ_API_KEY"] = "your_groq_api_key"
|
14 |
-
model_name = "
|
15 |
llm = ChatGroq(model=model_name, temperature=0.7)
|
16 |
logging.info(f'Validation LLM {model_name} initialized')
|
17 |
return llm
|
|
|
2 |
import os
|
3 |
from langchain_groq import ChatGroq
|
4 |
|
5 |
+
def initialize_generation_llm():
|
6 |
os.environ["GROQ_API_KEY"] = "your_groq_api_key"
|
7 |
model_name = "llama3-8b-8192"
|
8 |
llm = ChatGroq(model=model_name, temperature=0.7)
|
|
|
11 |
|
12 |
def initialize_validation_llm():
|
13 |
os.environ["GROQ_API_KEY"] = "your_groq_api_key"
|
14 |
+
model_name = "llama3-70b-8192"
|
15 |
llm = ChatGroq(model=model_name, temperature=0.7)
|
16 |
logging.info(f'Validation LLM {model_name} initialized')
|
17 |
return llm
|
main.py
CHANGED
@@ -12,7 +12,7 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
12 |
|
13 |
def main():
|
14 |
logging.info("Starting the RAG pipeline")
|
15 |
-
data_set_name = '
|
16 |
|
17 |
# Load the dataset
|
18 |
dataset = load_data(data_set_name)
|
@@ -36,7 +36,7 @@ def main():
|
|
36 |
val_llm = initialize_validation_llm()
|
37 |
|
38 |
# Sample question
|
39 |
-
row_num =
|
40 |
query = dataset[row_num]['question']
|
41 |
|
42 |
# Call generate_metrics for above sample question
|
|
|
12 |
|
13 |
def main():
|
14 |
logging.info("Starting the RAG pipeline")
|
15 |
+
data_set_name = 'techqa'
|
16 |
|
17 |
# Load the dataset
|
18 |
dataset = load_data(data_set_name)
|
|
|
36 |
val_llm = initialize_validation_llm()
|
37 |
|
38 |
# Sample question
|
39 |
+
row_num = 7
|
40 |
query = dataset[row_num]['question']
|
41 |
|
42 |
# Call generate_metrics for above sample question
|
retriever/embed_documents.py
CHANGED
@@ -2,6 +2,6 @@ from langchain_huggingface import HuggingFaceEmbeddings
|
|
2 |
from langchain_community.vectorstores import FAISS
|
3 |
|
4 |
def embed_documents(documents):
|
5 |
-
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/
|
6 |
vector_store = FAISS.from_texts([doc['text'] for doc in documents], embedding_model)
|
7 |
return vector_store
|
|
|
2 |
from langchain_community.vectorstores import FAISS
|
3 |
|
4 |
def embed_documents(documents):
|
5 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L3-v2")
|
6 |
vector_store = FAISS.from_texts([doc['text'] for doc in documents], embedding_model)
|
7 |
return vector_store
|