Gourisankar Padihary
commited on
Commit
·
d93e32b
1
Parent(s):
5485d7c
Support for all data set
Browse files- config.py +1 -1
- retriever/chunk_documents.py +13 -0
- retriever/embed_documents.py +78 -1
config.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
|
2 |
class ConfigConstants:
|
3 |
# Constants related to datasets and models
|
4 |
-
DATA_SET_NAMES = ['covidqa', '
|
5 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L3-v2"
|
6 |
RE_RANKER_MODEL_NAME = 'cross-encoder/ms-marco-electra-base'
|
7 |
DEFAULT_CHUNK_SIZE = 1000
|
|
|
1 |
|
2 |
class ConfigConstants:
|
3 |
# Constants related to datasets and models
|
4 |
+
DATA_SET_NAMES = ['covidqa', 'cuad', 'delucionqa', 'emanual', 'expertqa', 'finqa', 'hagrid', 'hotpotqa', 'msmarco', 'pubmedqa', 'tatqa', 'techqa']
|
5 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L3-v2"
|
6 |
RE_RANKER_MODEL_NAME = 'cross-encoder/ms-marco-electra-base'
|
7 |
DEFAULT_CHUNK_SIZE = 1000
|
retriever/chunk_documents.py
CHANGED
@@ -1,12 +1,25 @@
|
|
1 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
2 |
|
3 |
def chunk_documents(dataset, chunk_size=1000, chunk_overlap=200):
|
4 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
5 |
documents = []
|
|
|
|
|
6 |
for data in dataset:
|
7 |
text_list = data['documents']
|
8 |
for text in text_list:
|
9 |
chunks = text_splitter.split_text(text)
|
10 |
for i, chunk in enumerate(chunks):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
documents.append({'text': chunk, 'source': f"{data['question']}_chunk_{i}"})
|
|
|
|
|
12 |
return documents
|
|
|
1 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
2 |
+
import hashlib
|
3 |
|
4 |
def chunk_documents(dataset, chunk_size=1000, chunk_overlap=200):
|
5 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
6 |
documents = []
|
7 |
+
seen_hashes = set() # Track hashes of chunks to avoid duplicates
|
8 |
+
|
9 |
for data in dataset:
|
10 |
text_list = data['documents']
|
11 |
for text in text_list:
|
12 |
chunks = text_splitter.split_text(text)
|
13 |
for i, chunk in enumerate(chunks):
|
14 |
+
# Generate a unique hash for the chunk
|
15 |
+
chunk_hash = hashlib.sha256(chunk.encode()).hexdigest()
|
16 |
+
|
17 |
+
# Skip if the chunk is a duplicate
|
18 |
+
if chunk_hash in seen_hashes:
|
19 |
+
continue
|
20 |
+
|
21 |
+
# Add the chunk to the documents list and track its hash
|
22 |
documents.append({'text': chunk, 'source': f"{data['question']}_chunk_{i}"})
|
23 |
+
seen_hashes.add(chunk_hash)
|
24 |
+
|
25 |
return documents
|
retriever/embed_documents.py
CHANGED
@@ -7,7 +7,7 @@ from config import ConfigConstants
|
|
7 |
|
8 |
def embed_documents(documents, embedding_path="embeddings.faiss"):
|
9 |
embedding_model = HuggingFaceEmbeddings(model_name=ConfigConstants.EMBEDDING_MODEL_NAME)
|
10 |
-
|
11 |
if os.path.exists(embedding_path):
|
12 |
logging.info("Loading embeddings from local file")
|
13 |
vector_store = FAISS.load_local(embedding_path, embedding_model, allow_dangerous_deserialization=True)
|
@@ -17,3 +17,80 @@ def embed_documents(documents, embedding_path="embeddings.faiss"):
|
|
17 |
vector_store.save_local(embedding_path)
|
18 |
|
19 |
return vector_store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def embed_documents(documents, embedding_path="embeddings.faiss"):
|
9 |
embedding_model = HuggingFaceEmbeddings(model_name=ConfigConstants.EMBEDDING_MODEL_NAME)
|
10 |
+
|
11 |
if os.path.exists(embedding_path):
|
12 |
logging.info("Loading embeddings from local file")
|
13 |
vector_store = FAISS.load_local(embedding_path, embedding_model, allow_dangerous_deserialization=True)
|
|
|
17 |
vector_store.save_local(embedding_path)
|
18 |
|
19 |
return vector_store
|
20 |
+
|
21 |
+
'''import os
|
22 |
+
import logging
|
23 |
+
import hashlib
|
24 |
+
from typing import List, Dict
|
25 |
+
from concurrent.futures import ThreadPoolExecutor
|
26 |
+
from tqdm import tqdm
|
27 |
+
from langchain_community.vectorstores import FAISS
|
28 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
29 |
+
from config import ConfigConstants
|
30 |
+
|
31 |
+
|
32 |
+
def embed_documents(documents: List[Dict], embedding_path: str = "embeddings.faiss", metadata_path: str = "metadata.json") -> FAISS:
|
33 |
+
logging.info(f"Total documents got :{len(documents)}")
|
34 |
+
embedding_model = HuggingFaceEmbeddings(model_name=ConfigConstants.EMBEDDING_MODEL_NAME)
|
35 |
+
|
36 |
+
if os.path.exists(embedding_path) and os.path.exists(metadata_path):
|
37 |
+
logging.info("Loading embeddings and metadata from local files")
|
38 |
+
vector_store = FAISS.load_local(embedding_path, embedding_model, allow_dangerous_deserialization=True)
|
39 |
+
existing_metadata = _load_metadata(metadata_path)
|
40 |
+
else:
|
41 |
+
# Initialize FAISS with at least one document to avoid the IndexError
|
42 |
+
if documents:
|
43 |
+
vector_store = FAISS.from_texts([documents[0]['text']], embedding_model)
|
44 |
+
else:
|
45 |
+
# If no documents are provided, initialize an empty FAISS index with a dummy document
|
46 |
+
vector_store = FAISS.from_texts(["dummy document"], embedding_model)
|
47 |
+
existing_metadata = {}
|
48 |
+
|
49 |
+
# Identify new or modified documents
|
50 |
+
new_documents = []
|
51 |
+
for doc in documents:
|
52 |
+
doc_hash = _generate_document_hash(doc['text'])
|
53 |
+
if doc_hash not in existing_metadata:
|
54 |
+
new_documents.append(doc)
|
55 |
+
existing_metadata[doc_hash] = True # Mark as processed
|
56 |
+
|
57 |
+
if new_documents:
|
58 |
+
logging.info(f"Generating embeddings for {len(new_documents)} new documents")
|
59 |
+
with ThreadPoolExecutor() as executor:
|
60 |
+
futures = []
|
61 |
+
for doc in new_documents:
|
62 |
+
futures.append(executor.submit(_embed_single_document, doc, embedding_model))
|
63 |
+
|
64 |
+
for future in tqdm(futures, desc="Generating embeddings", unit="doc"):
|
65 |
+
vector_store.add_texts([future.result()])
|
66 |
+
|
67 |
+
# Save updated embeddings and metadata
|
68 |
+
vector_store.save_local(embedding_path)
|
69 |
+
_save_metadata(metadata_path, existing_metadata)
|
70 |
+
else:
|
71 |
+
logging.info("No new documents to process. Using existing embeddings.")
|
72 |
+
|
73 |
+
return vector_store
|
74 |
+
|
75 |
+
def _embed_single_document(doc: Dict, embedding_model: HuggingFaceEmbeddings) -> str:
|
76 |
+
return doc['text']
|
77 |
+
|
78 |
+
def _generate_document_hash(text: str) -> str:
|
79 |
+
"""Generate a unique hash for a document based on its text."""
|
80 |
+
return hashlib.sha256(text.encode()).hexdigest()
|
81 |
+
|
82 |
+
def _load_metadata(metadata_path: str) -> Dict[str, bool]:
|
83 |
+
"""Load metadata from a file."""
|
84 |
+
import json
|
85 |
+
if os.path.exists(metadata_path):
|
86 |
+
with open(metadata_path, "r") as f:
|
87 |
+
return json.load(f)
|
88 |
+
return {}
|
89 |
+
|
90 |
+
def _save_metadata(metadata_path: str, metadata: Dict[str, bool]):
|
91 |
+
"""Save metadata to a file."""
|
92 |
+
import json
|
93 |
+
with open(metadata_path, "w") as f:
|
94 |
+
json.dump(metadata, f)'''
|
95 |
+
|
96 |
+
|