Spaces:
Running
Running
import json | |
import torch | |
from torch import nn | |
from safetensors.torch import load_file | |
from transformers import AutoModel, AutoTokenizer | |
from huggingface_hub import hf_hub_download | |
# Set device | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load the model state_dict from safetensors | |
def load_model_safetensors(model, load_path="model.safetensors"): | |
# Load the safetensors file | |
state_dict = load_file(load_path) | |
# Load the state dict into the model | |
model.load_state_dict(state_dict) | |
return model | |
################### | |
# JINA EMBEDDINGS | |
################### | |
# Jina Configs | |
JINA_CONTEXT_LEN = 1024 | |
# Adapter for embeddings | |
class Adapter(nn.Module): | |
def __init__(self, hidden_size): | |
super(Adapter, self).__init__() | |
self.down_project = nn.Linear(hidden_size, hidden_size // 2) | |
self.activation = nn.ReLU() | |
self.up_project = nn.Linear(hidden_size // 2, hidden_size) | |
def forward(self, x): | |
down = self.down_project(x) | |
activated = self.activation(down) | |
up = self.up_project(activated) | |
return up + x # Residual connection | |
# Pool by attention score | |
class AttentionPooling(nn.Module): | |
def __init__(self, hidden_size): | |
super(AttentionPooling, self).__init__() | |
self.attention_weights = nn.Parameter(torch.randn(hidden_size)) | |
def forward(self, hidden_states): | |
# hidden_states: [seq_len, batch_size, hidden_size] | |
scores = torch.matmul(hidden_states, self.attention_weights) | |
attention_weights = torch.softmax(scores, dim=0) | |
weighted_sum = torch.sum(attention_weights.unsqueeze(-1) * hidden_states, dim=0) | |
return weighted_sum | |
# Custom bi-encoder model with MLP layers for interaction | |
class CrossEncoderWithSharedBase(nn.Module): | |
def __init__(self, base_model, num_labels=2, num_heads=8): | |
super(CrossEncoderWithSharedBase, self).__init__() | |
# Shared pre-trained model | |
self.shared_encoder = base_model | |
hidden_size = self.shared_encoder.config.hidden_size | |
# Sentence-specific adapters | |
self.adapter1 = Adapter(hidden_size) | |
self.adapter2 = Adapter(hidden_size) | |
# Cross-attention layers | |
self.cross_attention_1_to_2 = nn.MultiheadAttention(hidden_size, num_heads) | |
self.cross_attention_2_to_1 = nn.MultiheadAttention(hidden_size, num_heads) | |
# Attention pooling layers | |
self.attn_pooling_1_to_2 = AttentionPooling(hidden_size) | |
self.attn_pooling_2_to_1 = AttentionPooling(hidden_size) | |
# Projection layer with non-linearity | |
self.projection_layer = nn.Sequential( | |
nn.Linear(hidden_size * 2, hidden_size), | |
nn.ReLU() | |
) | |
# Classifier with three hidden layers | |
self.classifier = nn.Sequential( | |
nn.Linear(hidden_size, hidden_size // 2), | |
nn.ReLU(), | |
nn.Dropout(0.1), | |
nn.Linear(hidden_size // 2, hidden_size // 4), | |
nn.ReLU(), | |
nn.Dropout(0.1), | |
nn.Linear(hidden_size // 4, num_labels) | |
) | |
def forward(self, input_ids1, attention_mask1, input_ids2, attention_mask2): | |
# Encode sentences | |
outputs1 = self.shared_encoder(input_ids1, attention_mask=attention_mask1) | |
outputs2 = self.shared_encoder(input_ids2, attention_mask=attention_mask2) | |
# Apply sentence-specific adapters | |
embeds1 = self.adapter1(outputs1.last_hidden_state) | |
embeds2 = self.adapter2(outputs2.last_hidden_state) | |
# Transpose for attention layers | |
embeds1 = embeds1.transpose(0, 1) | |
embeds2 = embeds2.transpose(0, 1) | |
# Cross-attention | |
cross_attn_1_to_2, _ = self.cross_attention_1_to_2(embeds1, embeds2, embeds2) | |
cross_attn_2_to_1, _ = self.cross_attention_2_to_1(embeds2, embeds1, embeds1) | |
# Attention pooling | |
pooled_1_to_2 = self.attn_pooling_1_to_2(cross_attn_1_to_2) | |
pooled_2_to_1 = self.attn_pooling_2_to_1(cross_attn_2_to_1) | |
# Concatenate and project | |
combined = torch.cat((pooled_1_to_2, pooled_2_to_1), dim=1) | |
projected = self.projection_layer(combined) | |
# Classification | |
logits = self.classifier(projected) | |
return logits | |
# Prediction function for embeddings relevance | |
def embeddings_predict_relevance(sentence1, sentence2, model, tokenizer, device): | |
model.eval() | |
inputs1 = tokenizer(sentence1, return_tensors="pt", truncation=True, padding="max_length", max_length=1024) | |
inputs2 = tokenizer(sentence2, return_tensors="pt", truncation=True, padding="max_length", max_length=1024) | |
input_ids1 = inputs1['input_ids'].to(device) | |
attention_mask1 = inputs1['attention_mask'].to(device) | |
input_ids2 = inputs2['input_ids'].to(device) | |
attention_mask2 = inputs2['attention_mask'].to(device) | |
with torch.no_grad(): | |
outputs = model(input_ids1=input_ids1, attention_mask1=attention_mask1, | |
input_ids2=input_ids2, attention_mask2=attention_mask2) | |
probabilities = torch.softmax(outputs, dim=1) | |
predicted_label = torch.argmax(probabilities, dim=1).item() | |
return predicted_label, probabilities.cpu().numpy() | |
# Load configuration file | |
jina_repo_path = "govtech/jina-embeddings-v2-small-en-off-topic" | |
jina_config_path = hf_hub_download(repo_id=jina_repo_path, filename="config.json") | |
with open(jina_config_path, 'r') as f: | |
jina_config = json.load(f) | |
# Load Jina model configuration | |
JINA_MODEL_NAME = jina_config['classifier']['embedding']['model_name'] | |
jina_model_weights_fp = jina_config['classifier']['embedding']['model_weights_fp'] | |
# Load tokenizer and model | |
jina_tokenizer = AutoTokenizer.from_pretrained(JINA_MODEL_NAME) | |
jina_base_model = AutoModel.from_pretrained(JINA_MODEL_NAME) | |
jina_model = CrossEncoderWithSharedBase(jina_base_model, num_labels=2) | |
# Load model weights from safetensors | |
jina_model_weights_path = hf_hub_download(repo_id=jina_repo_path, filename=jina_model_weights_fp) | |
jina_model = load_model_safetensors(jina_model, jina_model_weights_path) | |
################# | |
# CROSS-ENCODER | |
################# | |
# STSB Configuration | |
STSB_CONTEXT_LEN = 512 | |
class CrossEncoderWithMLP(nn.Module): | |
def __init__(self, base_model, num_labels=2): | |
super(CrossEncoderWithMLP, self).__init__() | |
# Existing cross-encoder model | |
self.base_model = base_model | |
# Hidden size of the base model | |
hidden_size = base_model.config.hidden_size | |
# MLP layers after combining the cross-encoders | |
self.mlp = nn.Sequential( | |
nn.Linear(hidden_size, hidden_size // 2), # Input: a single sentence | |
nn.ReLU(), | |
nn.Linear(hidden_size // 2, hidden_size // 4), # Reduce the size of the layer | |
nn.ReLU() | |
) | |
# Classifier head | |
self.classifier = nn.Linear(hidden_size // 4, num_labels) | |
def forward(self, input_ids, attention_mask): | |
# Encode the pair of sentences in one pass | |
outputs = self.base_model(input_ids, attention_mask) | |
pooled_output = outputs.pooler_output | |
# Pass the pooled output through mlp layers | |
mlp_output = self.mlp(pooled_output) | |
# Pass the final MLP output through the classifier | |
logits = self.classifier(mlp_output) | |
return logits | |
# Prediction function for cross-encoder | |
def cross_encoder_predict_relevance(sentence1, sentence2, model, tokenizer, device): | |
model.eval() | |
# Tokenize the pair of sentences | |
encoding = tokenizer( | |
sentence1, sentence2, # Takes in a two sentences as a pair | |
return_tensors="pt", | |
truncation=True, | |
padding="max_length", | |
max_length=512, | |
return_token_type_ids=False | |
) | |
# Extract the input_ids and attention mask | |
input_ids = encoding["input_ids"].to(device) | |
attention_mask = encoding["attention_mask"].to(device) | |
with torch.no_grad(): | |
outputs = model( | |
input_ids=input_ids, | |
attention_mask=attention_mask | |
) # Returns logits | |
# Convert raw logits into probabilities for each class and get the predicted label | |
probabilities = torch.softmax(outputs, dim=1) | |
predicted_label = torch.argmax(probabilities, dim=1).item() | |
return predicted_label, probabilities.cpu().numpy() | |
# Load STSB model configuration | |
stsb_repo_path = "govtech/stsb-roberta-base-off-topic" | |
stsb_config_path = hf_hub_download(repo_id=stsb_repo_path, filename="config.json") | |
with open(stsb_config_path, 'r') as f: | |
stsb_config = json.load(f) | |
STSB_MODEL_NAME = stsb_config['classifier']['embedding']['model_name'] | |
stsb_model_weights_fp = stsb_config['classifier']['embedding']['model_weights_fp'] | |
# Load STSB tokenizer and model | |
stsb_tokenizer = AutoTokenizer.from_pretrained(STSB_MODEL_NAME) | |
stsb_base_model = AutoModel.from_pretrained(STSB_MODEL_NAME) | |
stsb_model = CrossEncoderWithMLP(stsb_base_model, num_labels=2) | |
# Load model weights from safetensors for STSB | |
stsb_model_weights_path = hf_hub_download(repo_id=stsb_repo_path, filename=stsb_model_weights_fp) | |
stsb_model = load_model_safetensors(stsb_model, stsb_model_weights_path) | |