off-topic-demo / utils.py
Shing Yee
update models
70c7861 unverified
import json
import torch
from torch import nn
from safetensors.torch import load_file
from transformers import AutoModel, AutoTokenizer
from huggingface_hub import hf_hub_download
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the model state_dict from safetensors
def load_model_safetensors(model, load_path="model.safetensors"):
# Load the safetensors file
state_dict = load_file(load_path)
# Load the state dict into the model
model.load_state_dict(state_dict)
return model
###################
# JINA EMBEDDINGS
###################
# Jina Configs
JINA_CONTEXT_LEN = 1024
# Adapter for embeddings
class Adapter(nn.Module):
def __init__(self, hidden_size):
super(Adapter, self).__init__()
self.down_project = nn.Linear(hidden_size, hidden_size // 2)
self.activation = nn.ReLU()
self.up_project = nn.Linear(hidden_size // 2, hidden_size)
def forward(self, x):
down = self.down_project(x)
activated = self.activation(down)
up = self.up_project(activated)
return up + x # Residual connection
# Pool by attention score
class AttentionPooling(nn.Module):
def __init__(self, hidden_size):
super(AttentionPooling, self).__init__()
self.attention_weights = nn.Parameter(torch.randn(hidden_size))
def forward(self, hidden_states):
# hidden_states: [seq_len, batch_size, hidden_size]
scores = torch.matmul(hidden_states, self.attention_weights)
attention_weights = torch.softmax(scores, dim=0)
weighted_sum = torch.sum(attention_weights.unsqueeze(-1) * hidden_states, dim=0)
return weighted_sum
# Custom bi-encoder model with MLP layers for interaction
class CrossEncoderWithSharedBase(nn.Module):
def __init__(self, base_model, num_labels=2, num_heads=8):
super(CrossEncoderWithSharedBase, self).__init__()
# Shared pre-trained model
self.shared_encoder = base_model
hidden_size = self.shared_encoder.config.hidden_size
# Sentence-specific adapters
self.adapter1 = Adapter(hidden_size)
self.adapter2 = Adapter(hidden_size)
# Cross-attention layers
self.cross_attention_1_to_2 = nn.MultiheadAttention(hidden_size, num_heads)
self.cross_attention_2_to_1 = nn.MultiheadAttention(hidden_size, num_heads)
# Attention pooling layers
self.attn_pooling_1_to_2 = AttentionPooling(hidden_size)
self.attn_pooling_2_to_1 = AttentionPooling(hidden_size)
# Projection layer with non-linearity
self.projection_layer = nn.Sequential(
nn.Linear(hidden_size * 2, hidden_size),
nn.ReLU()
)
# Classifier with three hidden layers
self.classifier = nn.Sequential(
nn.Linear(hidden_size, hidden_size // 2),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_size // 2, hidden_size // 4),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_size // 4, num_labels)
)
def forward(self, input_ids1, attention_mask1, input_ids2, attention_mask2):
# Encode sentences
outputs1 = self.shared_encoder(input_ids1, attention_mask=attention_mask1)
outputs2 = self.shared_encoder(input_ids2, attention_mask=attention_mask2)
# Apply sentence-specific adapters
embeds1 = self.adapter1(outputs1.last_hidden_state)
embeds2 = self.adapter2(outputs2.last_hidden_state)
# Transpose for attention layers
embeds1 = embeds1.transpose(0, 1)
embeds2 = embeds2.transpose(0, 1)
# Cross-attention
cross_attn_1_to_2, _ = self.cross_attention_1_to_2(embeds1, embeds2, embeds2)
cross_attn_2_to_1, _ = self.cross_attention_2_to_1(embeds2, embeds1, embeds1)
# Attention pooling
pooled_1_to_2 = self.attn_pooling_1_to_2(cross_attn_1_to_2)
pooled_2_to_1 = self.attn_pooling_2_to_1(cross_attn_2_to_1)
# Concatenate and project
combined = torch.cat((pooled_1_to_2, pooled_2_to_1), dim=1)
projected = self.projection_layer(combined)
# Classification
logits = self.classifier(projected)
return logits
# Prediction function for embeddings relevance
def embeddings_predict_relevance(sentence1, sentence2, model, tokenizer, device):
model.eval()
inputs1 = tokenizer(sentence1, return_tensors="pt", truncation=True, padding="max_length", max_length=1024)
inputs2 = tokenizer(sentence2, return_tensors="pt", truncation=True, padding="max_length", max_length=1024)
input_ids1 = inputs1['input_ids'].to(device)
attention_mask1 = inputs1['attention_mask'].to(device)
input_ids2 = inputs2['input_ids'].to(device)
attention_mask2 = inputs2['attention_mask'].to(device)
with torch.no_grad():
outputs = model(input_ids1=input_ids1, attention_mask1=attention_mask1,
input_ids2=input_ids2, attention_mask2=attention_mask2)
probabilities = torch.softmax(outputs, dim=1)
predicted_label = torch.argmax(probabilities, dim=1).item()
return predicted_label, probabilities.cpu().numpy()
# Load configuration file
jina_repo_path = "govtech/jina-embeddings-v2-small-en-off-topic"
jina_config_path = hf_hub_download(repo_id=jina_repo_path, filename="config.json")
with open(jina_config_path, 'r') as f:
jina_config = json.load(f)
# Load Jina model configuration
JINA_MODEL_NAME = jina_config['classifier']['embedding']['model_name']
jina_model_weights_fp = jina_config['classifier']['embedding']['model_weights_fp']
# Load tokenizer and model
jina_tokenizer = AutoTokenizer.from_pretrained(JINA_MODEL_NAME)
jina_base_model = AutoModel.from_pretrained(JINA_MODEL_NAME)
jina_model = CrossEncoderWithSharedBase(jina_base_model, num_labels=2)
# Load model weights from safetensors
jina_model_weights_path = hf_hub_download(repo_id=jina_repo_path, filename=jina_model_weights_fp)
jina_model = load_model_safetensors(jina_model, jina_model_weights_path)
#################
# CROSS-ENCODER
#################
# STSB Configuration
STSB_CONTEXT_LEN = 512
class CrossEncoderWithMLP(nn.Module):
def __init__(self, base_model, num_labels=2):
super(CrossEncoderWithMLP, self).__init__()
# Existing cross-encoder model
self.base_model = base_model
# Hidden size of the base model
hidden_size = base_model.config.hidden_size
# MLP layers after combining the cross-encoders
self.mlp = nn.Sequential(
nn.Linear(hidden_size, hidden_size // 2), # Input: a single sentence
nn.ReLU(),
nn.Linear(hidden_size // 2, hidden_size // 4), # Reduce the size of the layer
nn.ReLU()
)
# Classifier head
self.classifier = nn.Linear(hidden_size // 4, num_labels)
def forward(self, input_ids, attention_mask):
# Encode the pair of sentences in one pass
outputs = self.base_model(input_ids, attention_mask)
pooled_output = outputs.pooler_output
# Pass the pooled output through mlp layers
mlp_output = self.mlp(pooled_output)
# Pass the final MLP output through the classifier
logits = self.classifier(mlp_output)
return logits
# Prediction function for cross-encoder
def cross_encoder_predict_relevance(sentence1, sentence2, model, tokenizer, device):
model.eval()
# Tokenize the pair of sentences
encoding = tokenizer(
sentence1, sentence2, # Takes in a two sentences as a pair
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=512,
return_token_type_ids=False
)
# Extract the input_ids and attention mask
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
with torch.no_grad():
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask
) # Returns logits
# Convert raw logits into probabilities for each class and get the predicted label
probabilities = torch.softmax(outputs, dim=1)
predicted_label = torch.argmax(probabilities, dim=1).item()
return predicted_label, probabilities.cpu().numpy()
# Load STSB model configuration
stsb_repo_path = "govtech/stsb-roberta-base-off-topic"
stsb_config_path = hf_hub_download(repo_id=stsb_repo_path, filename="config.json")
with open(stsb_config_path, 'r') as f:
stsb_config = json.load(f)
STSB_MODEL_NAME = stsb_config['classifier']['embedding']['model_name']
stsb_model_weights_fp = stsb_config['classifier']['embedding']['model_weights_fp']
# Load STSB tokenizer and model
stsb_tokenizer = AutoTokenizer.from_pretrained(STSB_MODEL_NAME)
stsb_base_model = AutoModel.from_pretrained(STSB_MODEL_NAME)
stsb_model = CrossEncoderWithMLP(stsb_base_model, num_labels=2)
# Load model weights from safetensors for STSB
stsb_model_weights_path = hf_hub_download(repo_id=stsb_repo_path, filename=stsb_model_weights_fp)
stsb_model = load_model_safetensors(stsb_model, stsb_model_weights_path)