import gradio as gr from utils import ( device, jina_tokenizer, jina_model, embeddings_predict_relevance, stsb_model, stsb_tokenizer, cross_encoder_predict_relevance ) def predict(system_prompt, user_prompt): predicted_label_jina, probabilities_jina = embeddings_predict_relevance(system_prompt, user_prompt, jina_model, jina_tokenizer, device) predicted_label_stsb, probabilities_stsb = cross_encoder_predict_relevance(system_prompt, user_prompt, stsb_model, stsb_tokenizer, device) result = f""" **Prediction Summary** **1. Model: jinaai/jina-embeddings-v2-small-en** - **Prediction**: {"🟥 Off-topic" if predicted_label_jina==1 else "🟩 On-topic"} - **Probability of being off-topic**: {probabilities_jina[0][1]:.2%} **2. Model: cross-encoder/stsb-roberta-base** - **Prediction**: {"🟥 Off-topic" if predicted_label_stsb==1 else "🟩 On-topic"} - **Probability of being off-topic**: {probabilities_stsb[0][1]:.2%} """ return result with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as app: gr.Markdown("# Off-Topic Classification using Fine-tuned Embeddings and Cross-Encoder Models") with gr.Row(): system_prompt = gr.TextArea(label="System Prompt", lines=5) user_prompt = gr.TextArea(label="User Prompt", lines=5) # Button to run the prediction get_classfication = gr.Button("Check Content") output_result = gr.Markdown(label="Classification and Probabilities") get_classfication.click( fn=predict, inputs=[system_prompt, user_prompt], outputs=output_result ) if __name__ == "__main__": app.launch()