Spaces:
Runtime error
Runtime error
Uploading Necessary files
Browse files- .gitattributes +1 -0
- README.md +6 -6
- app.py +110 -1
- briarmbg.py +456 -0
- input.jpg +0 -0
- input.mp4 +3 -0
- requirements.txt +10 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
input.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: BRIA RMBG 1.4
|
3 |
+
emoji: 💻
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.16.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: other
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,3 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torchvision.transforms.functional import normalize
|
4 |
+
from skimage import io
|
5 |
+
import torch, os
|
6 |
+
from PIL import Image
|
7 |
+
from briarmbg import BriaRMBG
|
8 |
import gradio as gr
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
import time
|
12 |
+
import random
|
13 |
+
from PIL import Image
|
14 |
|
15 |
+
|
16 |
+
bgrm = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
|
17 |
+
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
bgrm.to(device)
|
20 |
+
|
21 |
+
|
22 |
+
def resize_image(image):
|
23 |
+
image = image.convert('RGB')
|
24 |
+
model_input_size = (1024, 1024)
|
25 |
+
image = image.resize(model_input_size, Image.BILINEAR)
|
26 |
+
return image
|
27 |
+
|
28 |
+
|
29 |
+
def process(image):
|
30 |
+
|
31 |
+
# prepare input
|
32 |
+
orig_image = Image.fromarray(image)
|
33 |
+
w,h = orig_im_size = orig_image.size
|
34 |
+
image = resize_image(orig_image)
|
35 |
+
im_np = np.array(image)
|
36 |
+
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
|
37 |
+
im_tensor = torch.unsqueeze(im_tensor,0)
|
38 |
+
im_tensor = torch.divide(im_tensor,255.0)
|
39 |
+
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
40 |
+
if torch.cuda.is_available():
|
41 |
+
im_tensor=im_tensor.cuda()
|
42 |
+
|
43 |
+
#inference
|
44 |
+
result=bgrm(im_tensor)
|
45 |
+
# post process
|
46 |
+
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
|
47 |
+
ma = torch.max(result)
|
48 |
+
mi = torch.min(result)
|
49 |
+
result = (result-mi)/(ma-mi)
|
50 |
+
# image to pil
|
51 |
+
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
|
52 |
+
pil_im = Image.fromarray(np.squeeze(im_array))
|
53 |
+
# paste the mask on the original image
|
54 |
+
new_im = Image.new("RGBA", pil_im.size, (0,255,0,255))
|
55 |
+
new_im.paste(orig_image, mask=pil_im)
|
56 |
+
# new_orig_image = orig_image.convert('RGBA')
|
57 |
+
return new_im
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
def process_video(video, progress=gr.Progress()):
|
64 |
+
|
65 |
+
cap = cv2.VideoCapture(video)
|
66 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Get total frames
|
67 |
+
writer = None
|
68 |
+
tmpname ='output.mp4'
|
69 |
+
processed_frames = 0
|
70 |
+
start_time = time.time()
|
71 |
+
i=0
|
72 |
+
while cap.isOpened():
|
73 |
+
ret, frame = cap.read()
|
74 |
+
|
75 |
+
if ret is False:
|
76 |
+
break
|
77 |
+
|
78 |
+
if time.time() - start_time >= 20 * 60 - 5:
|
79 |
+
print("GPU Timeout is coming")
|
80 |
+
cap.release()
|
81 |
+
writer.release()
|
82 |
+
return tmpname
|
83 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
84 |
+
img = Image.fromarray(frame).convert('RGB')
|
85 |
+
|
86 |
+
if writer is None:
|
87 |
+
writer = cv2.VideoWriter(tmpname, cv2.VideoWriter_fourcc(*'mp4v'), cap.get(cv2.CAP_PROP_FPS), img.size)
|
88 |
+
|
89 |
+
processed_frames += 1
|
90 |
+
print(f"Processing frame {processed_frames}")
|
91 |
+
progress(processed_frames / total_frames, desc=f"Processing frame {processed_frames}/{total_frames}")
|
92 |
+
out = process(np.array(img))
|
93 |
+
writer.write(cv2.cvtColor(np.array(out), cv2.COLOR_BGR2RGB))
|
94 |
+
|
95 |
+
cap.release()
|
96 |
+
writer.release()
|
97 |
+
return tmpname
|
98 |
+
|
99 |
+
title = "🎞️ Video Background Removal Tool 🎥"
|
100 |
+
description = """Please note that if your video file is long (has a high number of frames), there is a chance that processing break due to GPU timeout. In this case, consider trying Fast mode."""
|
101 |
+
|
102 |
+
examples = [['./input.mp4']]
|
103 |
+
|
104 |
+
iface = gr.Interface(
|
105 |
+
fn=process_video,
|
106 |
+
inputs=["video"],
|
107 |
+
outputs="video",
|
108 |
+
examples=examples,
|
109 |
+
title=title,
|
110 |
+
description=description
|
111 |
+
)
|
112 |
+
iface.launch()
|
briarmbg.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from huggingface_hub import PyTorchModelHubMixin
|
5 |
+
|
6 |
+
class REBNCONV(nn.Module):
|
7 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
8 |
+
super(REBNCONV,self).__init__()
|
9 |
+
|
10 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
|
11 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
12 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
13 |
+
|
14 |
+
def forward(self,x):
|
15 |
+
|
16 |
+
hx = x
|
17 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
18 |
+
|
19 |
+
return xout
|
20 |
+
|
21 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
22 |
+
def _upsample_like(src,tar):
|
23 |
+
|
24 |
+
src = F.interpolate(src,size=tar.shape[2:],mode='bilinear')
|
25 |
+
|
26 |
+
return src
|
27 |
+
|
28 |
+
|
29 |
+
### RSU-7 ###
|
30 |
+
class RSU7(nn.Module):
|
31 |
+
|
32 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
33 |
+
super(RSU7,self).__init__()
|
34 |
+
|
35 |
+
self.in_ch = in_ch
|
36 |
+
self.mid_ch = mid_ch
|
37 |
+
self.out_ch = out_ch
|
38 |
+
|
39 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
|
40 |
+
|
41 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
42 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
43 |
+
|
44 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
45 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
46 |
+
|
47 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
48 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
49 |
+
|
50 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
51 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
52 |
+
|
53 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
54 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
55 |
+
|
56 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
57 |
+
|
58 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
59 |
+
|
60 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
61 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
62 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
63 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
64 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
65 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
66 |
+
|
67 |
+
def forward(self,x):
|
68 |
+
b, c, h, w = x.shape
|
69 |
+
|
70 |
+
hx = x
|
71 |
+
hxin = self.rebnconvin(hx)
|
72 |
+
|
73 |
+
hx1 = self.rebnconv1(hxin)
|
74 |
+
hx = self.pool1(hx1)
|
75 |
+
|
76 |
+
hx2 = self.rebnconv2(hx)
|
77 |
+
hx = self.pool2(hx2)
|
78 |
+
|
79 |
+
hx3 = self.rebnconv3(hx)
|
80 |
+
hx = self.pool3(hx3)
|
81 |
+
|
82 |
+
hx4 = self.rebnconv4(hx)
|
83 |
+
hx = self.pool4(hx4)
|
84 |
+
|
85 |
+
hx5 = self.rebnconv5(hx)
|
86 |
+
hx = self.pool5(hx5)
|
87 |
+
|
88 |
+
hx6 = self.rebnconv6(hx)
|
89 |
+
|
90 |
+
hx7 = self.rebnconv7(hx6)
|
91 |
+
|
92 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
93 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
94 |
+
|
95 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
96 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
97 |
+
|
98 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
99 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
100 |
+
|
101 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
102 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
103 |
+
|
104 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
105 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
106 |
+
|
107 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
108 |
+
|
109 |
+
return hx1d + hxin
|
110 |
+
|
111 |
+
|
112 |
+
### RSU-6 ###
|
113 |
+
class RSU6(nn.Module):
|
114 |
+
|
115 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
116 |
+
super(RSU6,self).__init__()
|
117 |
+
|
118 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
119 |
+
|
120 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
121 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
122 |
+
|
123 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
124 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
125 |
+
|
126 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
127 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
128 |
+
|
129 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
130 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
131 |
+
|
132 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
133 |
+
|
134 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
135 |
+
|
136 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
137 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
138 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
139 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
140 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
141 |
+
|
142 |
+
def forward(self,x):
|
143 |
+
|
144 |
+
hx = x
|
145 |
+
|
146 |
+
hxin = self.rebnconvin(hx)
|
147 |
+
|
148 |
+
hx1 = self.rebnconv1(hxin)
|
149 |
+
hx = self.pool1(hx1)
|
150 |
+
|
151 |
+
hx2 = self.rebnconv2(hx)
|
152 |
+
hx = self.pool2(hx2)
|
153 |
+
|
154 |
+
hx3 = self.rebnconv3(hx)
|
155 |
+
hx = self.pool3(hx3)
|
156 |
+
|
157 |
+
hx4 = self.rebnconv4(hx)
|
158 |
+
hx = self.pool4(hx4)
|
159 |
+
|
160 |
+
hx5 = self.rebnconv5(hx)
|
161 |
+
|
162 |
+
hx6 = self.rebnconv6(hx5)
|
163 |
+
|
164 |
+
|
165 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
166 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
167 |
+
|
168 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
169 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
170 |
+
|
171 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
172 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
173 |
+
|
174 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
175 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
176 |
+
|
177 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
178 |
+
|
179 |
+
return hx1d + hxin
|
180 |
+
|
181 |
+
### RSU-5 ###
|
182 |
+
class RSU5(nn.Module):
|
183 |
+
|
184 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
185 |
+
super(RSU5,self).__init__()
|
186 |
+
|
187 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
188 |
+
|
189 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
190 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
191 |
+
|
192 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
193 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
194 |
+
|
195 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
196 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
197 |
+
|
198 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
199 |
+
|
200 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
201 |
+
|
202 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
203 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
204 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
205 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
206 |
+
|
207 |
+
def forward(self,x):
|
208 |
+
|
209 |
+
hx = x
|
210 |
+
|
211 |
+
hxin = self.rebnconvin(hx)
|
212 |
+
|
213 |
+
hx1 = self.rebnconv1(hxin)
|
214 |
+
hx = self.pool1(hx1)
|
215 |
+
|
216 |
+
hx2 = self.rebnconv2(hx)
|
217 |
+
hx = self.pool2(hx2)
|
218 |
+
|
219 |
+
hx3 = self.rebnconv3(hx)
|
220 |
+
hx = self.pool3(hx3)
|
221 |
+
|
222 |
+
hx4 = self.rebnconv4(hx)
|
223 |
+
|
224 |
+
hx5 = self.rebnconv5(hx4)
|
225 |
+
|
226 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
227 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
228 |
+
|
229 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
230 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
231 |
+
|
232 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
233 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
234 |
+
|
235 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
236 |
+
|
237 |
+
return hx1d + hxin
|
238 |
+
|
239 |
+
### RSU-4 ###
|
240 |
+
class RSU4(nn.Module):
|
241 |
+
|
242 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
243 |
+
super(RSU4,self).__init__()
|
244 |
+
|
245 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
246 |
+
|
247 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
248 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
249 |
+
|
250 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
251 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
252 |
+
|
253 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
254 |
+
|
255 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
256 |
+
|
257 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
258 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
259 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
260 |
+
|
261 |
+
def forward(self,x):
|
262 |
+
|
263 |
+
hx = x
|
264 |
+
|
265 |
+
hxin = self.rebnconvin(hx)
|
266 |
+
|
267 |
+
hx1 = self.rebnconv1(hxin)
|
268 |
+
hx = self.pool1(hx1)
|
269 |
+
|
270 |
+
hx2 = self.rebnconv2(hx)
|
271 |
+
hx = self.pool2(hx2)
|
272 |
+
|
273 |
+
hx3 = self.rebnconv3(hx)
|
274 |
+
|
275 |
+
hx4 = self.rebnconv4(hx3)
|
276 |
+
|
277 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
278 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
279 |
+
|
280 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
281 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
282 |
+
|
283 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
284 |
+
|
285 |
+
return hx1d + hxin
|
286 |
+
|
287 |
+
### RSU-4F ###
|
288 |
+
class RSU4F(nn.Module):
|
289 |
+
|
290 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
291 |
+
super(RSU4F,self).__init__()
|
292 |
+
|
293 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
294 |
+
|
295 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
296 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
297 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
298 |
+
|
299 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
300 |
+
|
301 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
302 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
303 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
304 |
+
|
305 |
+
def forward(self,x):
|
306 |
+
|
307 |
+
hx = x
|
308 |
+
|
309 |
+
hxin = self.rebnconvin(hx)
|
310 |
+
|
311 |
+
hx1 = self.rebnconv1(hxin)
|
312 |
+
hx2 = self.rebnconv2(hx1)
|
313 |
+
hx3 = self.rebnconv3(hx2)
|
314 |
+
|
315 |
+
hx4 = self.rebnconv4(hx3)
|
316 |
+
|
317 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
318 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
319 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
320 |
+
|
321 |
+
return hx1d + hxin
|
322 |
+
|
323 |
+
|
324 |
+
class myrebnconv(nn.Module):
|
325 |
+
def __init__(self, in_ch=3,
|
326 |
+
out_ch=1,
|
327 |
+
kernel_size=3,
|
328 |
+
stride=1,
|
329 |
+
padding=1,
|
330 |
+
dilation=1,
|
331 |
+
groups=1):
|
332 |
+
super(myrebnconv,self).__init__()
|
333 |
+
|
334 |
+
self.conv = nn.Conv2d(in_ch,
|
335 |
+
out_ch,
|
336 |
+
kernel_size=kernel_size,
|
337 |
+
stride=stride,
|
338 |
+
padding=padding,
|
339 |
+
dilation=dilation,
|
340 |
+
groups=groups)
|
341 |
+
self.bn = nn.BatchNorm2d(out_ch)
|
342 |
+
self.rl = nn.ReLU(inplace=True)
|
343 |
+
|
344 |
+
def forward(self,x):
|
345 |
+
return self.rl(self.bn(self.conv(x)))
|
346 |
+
|
347 |
+
|
348 |
+
class BriaRMBG(nn.Module, PyTorchModelHubMixin):
|
349 |
+
|
350 |
+
def __init__(self,config:dict={"in_ch":3,"out_ch":1}):
|
351 |
+
super(BriaRMBG,self).__init__()
|
352 |
+
in_ch=config["in_ch"]
|
353 |
+
out_ch=config["out_ch"]
|
354 |
+
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
355 |
+
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
356 |
+
|
357 |
+
self.stage1 = RSU7(64,32,64)
|
358 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
359 |
+
|
360 |
+
self.stage2 = RSU6(64,32,128)
|
361 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
362 |
+
|
363 |
+
self.stage3 = RSU5(128,64,256)
|
364 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
365 |
+
|
366 |
+
self.stage4 = RSU4(256,128,512)
|
367 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
368 |
+
|
369 |
+
self.stage5 = RSU4F(512,256,512)
|
370 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
371 |
+
|
372 |
+
self.stage6 = RSU4F(512,256,512)
|
373 |
+
|
374 |
+
# decoder
|
375 |
+
self.stage5d = RSU4F(1024,256,512)
|
376 |
+
self.stage4d = RSU4(1024,128,256)
|
377 |
+
self.stage3d = RSU5(512,64,128)
|
378 |
+
self.stage2d = RSU6(256,32,64)
|
379 |
+
self.stage1d = RSU7(128,16,64)
|
380 |
+
|
381 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
382 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
383 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
384 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
385 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
386 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
387 |
+
|
388 |
+
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
389 |
+
|
390 |
+
def forward(self,x):
|
391 |
+
|
392 |
+
hx = x
|
393 |
+
|
394 |
+
hxin = self.conv_in(hx)
|
395 |
+
#hx = self.pool_in(hxin)
|
396 |
+
|
397 |
+
#stage 1
|
398 |
+
hx1 = self.stage1(hxin)
|
399 |
+
hx = self.pool12(hx1)
|
400 |
+
|
401 |
+
#stage 2
|
402 |
+
hx2 = self.stage2(hx)
|
403 |
+
hx = self.pool23(hx2)
|
404 |
+
|
405 |
+
#stage 3
|
406 |
+
hx3 = self.stage3(hx)
|
407 |
+
hx = self.pool34(hx3)
|
408 |
+
|
409 |
+
#stage 4
|
410 |
+
hx4 = self.stage4(hx)
|
411 |
+
hx = self.pool45(hx4)
|
412 |
+
|
413 |
+
#stage 5
|
414 |
+
hx5 = self.stage5(hx)
|
415 |
+
hx = self.pool56(hx5)
|
416 |
+
|
417 |
+
#stage 6
|
418 |
+
hx6 = self.stage6(hx)
|
419 |
+
hx6up = _upsample_like(hx6,hx5)
|
420 |
+
|
421 |
+
#-------------------- decoder --------------------
|
422 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
423 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
424 |
+
|
425 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
426 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
427 |
+
|
428 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
429 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
430 |
+
|
431 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
432 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
433 |
+
|
434 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
435 |
+
|
436 |
+
|
437 |
+
#side output
|
438 |
+
d1 = self.side1(hx1d)
|
439 |
+
d1 = _upsample_like(d1,x)
|
440 |
+
|
441 |
+
d2 = self.side2(hx2d)
|
442 |
+
d2 = _upsample_like(d2,x)
|
443 |
+
|
444 |
+
d3 = self.side3(hx3d)
|
445 |
+
d3 = _upsample_like(d3,x)
|
446 |
+
|
447 |
+
d4 = self.side4(hx4d)
|
448 |
+
d4 = _upsample_like(d4,x)
|
449 |
+
|
450 |
+
d5 = self.side5(hx5d)
|
451 |
+
d5 = _upsample_like(d5,x)
|
452 |
+
|
453 |
+
d6 = self.side6(hx6)
|
454 |
+
d6 = _upsample_like(d6,x)
|
455 |
+
|
456 |
+
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
|
input.jpg
ADDED
input.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f67ef25ad2ef3e72e3b2926bebbb8cfe49ee4ee702e56bae804931e0fb165698
|
3 |
+
size 4536473
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
gradio_imageslider
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
pillow
|
6 |
+
numpy
|
7 |
+
typing
|
8 |
+
gitpython
|
9 |
+
huggingface_hub
|
10 |
+
opencv-python
|