Spaces:
Running
Running
File size: 6,088 Bytes
b4dc5cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import json
import os
from pathlib import Path
from typing import Literal
import numpy as np
import pandas as pd
from utils.lang_util import detect_language_by_unicode, language_ranges
from utils.log_util import logger
from utils.text_util import contains_digit, get_space_count
from vocab import tokenizer_factory
CURRENT_DIR = Path.parent(Path.resolve(__file__))
cache = {}
default_columns = ["digit", "zh"]
def text_to_unicode(text: str) -> str:
"""Convert text to unicode representation."""
return "".join(rf"\u{ord(character):04X}" for character in text)
def calculate_dist(token_lens: list[int]) -> str:
"""Calculate the distribution of token lengths."""
if not token_lens:
return "-"
return f"{min(token_lens)},{round(np.median(token_lens))},{max(token_lens)}"
def iter_vocab(
tokenizer_name: str,
from_cache: bool = True,
cache_dir: str = "stats",
) -> pd.DataFrame | dict:
""":param tokenizer_name:
:param from_cache:
:param cache_dir:
:return:
"""
tokenizer_config = tokenizer_factory.get_tokenizer_config(tokenizer_name)
cache_dir = os.path.join(CURRENT_DIR, cache_dir)
os.makedirs(cache_dir, exist_ok=True)
# load from cache
cache_path = os.path.join(cache_dir, "character_stats.json")
if not cache and os.path.exists(cache_path):
with open(cache_path, encoding="utf-8") as f_tmp:
cache.update(json.load(f_tmp))
if from_cache and tokenizer_name in cache:
# logger.info(f"load {tokenizer_config.name_or_path} from cache")
return cache[tokenizer_name]
tokenizer = tokenizer_factory.get_tokenizer(tokenizer_name)
tokens_by_lang = {lang[1]: [] for lang in language_ranges}
digit_tokens = []
space_tokens = []
byte_tokens = []
buffer = []
for token_id in range(tokenizer.vocab_size):
# for token_id in tokenizer.get_vocab():
# for token_id in range(len(tokenizer)):
decode_str = tokenizer.decode([token_id], skip_special_tokens=False)
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
tags = []
if token is None: # 有些词典有空的id(不连续)
continue
if isinstance(token, bytes):
token = token.decode("utf-8", errors="ignore")
if hasattr(tokenizer, "sp_model") and tokenizer.sp_model.is_byte(token_id):
tags.append("is_byte")
byte_tokens.append(token)
language_tags = detect_language_by_unicode(decode_str)
for language in language_tags:
tokens_by_lang[language[1]].append(decode_str)
if contains_digit(decode_str):
tags.append("digit")
digit_tokens.append(decode_str)
space_count = get_space_count(decode_str)
if space_count > 0:
space_tokens.append(decode_str)
buffer.append(
json.dumps(
{
"id": token_id,
"token": token,
"token_decode": decode_str,
"token_dumps": json.dumps(token),
"token_unicode": text_to_unicode(token),
"token_len": len(decode_str),
},
ensure_ascii=False,
)
+ "\n"
)
result = {
"tokenizer": tokenizer_factory.get_name_with_hyperlink(tokenizer_name),
"organization": tokenizer_config.org,
"vocab_size": len(tokenizer),
"num(digit)": len(digit_tokens),
"len(digit)": calculate_dist([len(token) for token in digit_tokens]),
"num(space)": len(space_tokens),
"len(space)": calculate_dist([len(token) for token in space_tokens]),
}
for lang, tokens in tokens_by_lang.items():
result[f"num({lang})"] = len(tokens)
result["len(" + lang + ")"] = calculate_dist([len(token) for token in tokens])
out_path = os.path.join(
cache_dir, f"iter_vocab/{tokenizer_name.replace('/', '_')}.vocab.jsonl"
)
with open(out_path, "w", encoding="utf-8") as f_out:
for line in buffer:
f_out.write(line)
len_before = len(cache)
cache[tokenizer_name] = result
len_after = len(cache)
logger.info(f"saving {tokenizer_name} to memory and file cache: {len_before}->{len_after}")
with open(cache_path, "w", encoding="utf-8") as f_out:
f_out.write(json.dumps(cache, ensure_ascii=False, indent=2))
return result
def to_dataframe(stats: dict[str, Any], columns: list[str]) -> pd.DataFrame:
table = []
for stat in stats.values():
filtered_stat = {}
for k, v in stat.items():
if not k.startswith("num") and not k.startswith("len"):
filtered_stat[k] = v
if any(column in k for column in columns):
k = k.replace("ja-kana", "kana")
filtered_stat[k] = v
table.append(filtered_stat)
return pd.DataFrame(table)
def get_character_table(
tokenizer_filter: str | None = None,
columns: list | None = None,
return_type: Literal["dict", "dataframe"] | None = "dataframe",
) -> pd.DataFrame | dict:
logger.info(f"columns: {columns}, tokenizer_filter: {tokenizer_filter}")
stats = {}
if columns is None:
columns = default_columns
if tokenizer_filter is not None:
tokenizer_names = [
tokenizer_config.name_or_path
for tokenizer_config in tokenizer_factory.all_tokenizer_configs
if tokenizer_filter.lower() in tokenizer_config.name_or_path.lower()
]
else:
tokenizer_names = tokenizer_factory.all_tokenizer_names
for tokenizer_name in tokenizer_names:
stat = iter_vocab(tokenizer_name)
stats[tokenizer_name] = stat
if return_type == "dataframe":
stats = to_dataframe(stats, columns)
return stats
if __name__ == "__main__":
# aa = get_character_table(tokenizer_filter="baichuan")
df = get_character_table()
logger.info(f"\n{df.to_markdown(index=False)}")
|