File size: 6,015 Bytes
33f7995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import json
from functools import lru_cache
from typing import Any

import gradio as gr
import pandas as pd
from loguru import logger

from playground_examples import (
    default_tokenizer_name_1,
    default_tokenizer_name_2,
    default_user_input,
    examples,
)
from playground_tokenizers import TokenizerFactory


@lru_cache
def run_tokenization(
    text: str, tokenizer_name: str, color_num: int = 5, add_special_token: bool = False
) -> tuple[list[tuple[str, str]], int, pd.DataFrame]:
    """Tokenize an input text and return the tokens with their positions."""
    logger.info(
        "param="
        + json.dumps(
            {"text": text, "tokenizer_type": tokenizer_name}, ensure_ascii=False
        )
    )
    pos_tokens = []
    tokenizer = TokenizerFactory().get_tokenizer(tokenizer_name)
    encoding = tokenizer.encode(text) if add_special_token else tokenizer.encode(text)
    table = []

    for idx, token_id in enumerate(encoding):
        decoded_text = tokenizer.decode([token_id])
        decoded_text = decoded_text.replace(
            " ", "β‹…"
        )  # replace space with β‹… for better visualization
        pos_tokens.extend([(decoded_text, str(idx % color_num))])

        try:
            token = tokenizer.decode([token_id])[0]
        except:
            token = {v: k for k, v in tokenizer.get_vocab().items()}[token_id]

        if isinstance(token, bytes):
            try:
                token_str = token.decode("utf-8")
            except:
                token_str = token.decode("utf-8", errors="ignore")
                logger.error(
                    f"{idx}: decode_error: {tokenizer_name}, {token} {token_str}"
                )

        elif isinstance(token, str):
            token_str = token
        else:
            logger.error(
                f"{idx}: wrong type for token {token_id} {type(token)} "
                + json.dumps(
                    {"text": text, "tokenizer_type": tokenizer_name}, ensure_ascii=False
                )
            )
            token_str = token

        table.append({"TokenID": token_id, "Text": decoded_text})

    table_df = pd.DataFrame(table)
    logger.info(f"tokenizer_type={tokenizer_name}, Tokens={table[:4]}")
    return pos_tokens, len(encoding), table_df


def tokenize(
    text: str, tokenizer_name: str, color_num: int = 5
) -> tuple[dict[Any, Any], pd.DataFrame]:
    """Tokenize an input text."""
    pos_tokens, num_tokens, table_df = run_tokenization(text, tokenizer_name, color_num)
    return gr.update(value=pos_tokens, label=f"Tokens: {num_tokens}"), table_df


def tokenize_pair(
    text: str, tokenizer_name_1: str, tokenizer_name_2: str, color_num: int = 5
):
    """input_text.change."""
    pos_tokens_1, table_df_1 = tokenize(
        text=text, tokenizer_name=tokenizer_name_1, color_num=color_num
    )
    pos_tokens_2, table_df_2 = tokenize(
        text=text, tokenizer_name=tokenizer_name_2, color_num=color_num
    )
    return pos_tokens_1, table_df_1, pos_tokens_2, table_df_2


def on_load(url_params: str, request: gr.Request | None = None) -> tuple[str, str, str]:
    """Function triggered on page load to get URL parameters."""
    text = default_user_input
    tokenizer_type_1 = default_tokenizer_name_1
    tokenizer_type_2 = default_tokenizer_name_2
    return text, tokenizer_type_1, tokenizer_type_2


get_window_url_params = """
    function(url_params) {
        const params = new URLSearchParams(window.location.search);
        url_params = JSON.stringify(Object.fromEntries(params));
        return url_params;
        }
    """

all_tokenizer_name = [
    (config.name_display, config.name_or_path)
    for config in TokenizerFactory().all_tokenizer_configs
]

with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("## Input Text")
        dropdown_examples = gr.Dropdown(
            sorted(examples.keys()),
            value="Examples",
            type="index",
            allow_custom_value=True,
            show_label=False,
            container=False,
            scale=0,
            elem_classes="example-style",
        )
    user_input = gr.Textbox(
        label="Input Text",
        lines=5,
        show_label=False,
    )

    with gr.Row():
        with gr.Column(scale=6), gr.Group():
            tokenizer_name_1 = gr.Dropdown(all_tokenizer_name, label="Tokenizer 1")

        with gr.Column(scale=6), gr.Group():
            tokenizer_name_2 = gr.Dropdown(all_tokenizer_name, label="Tokenizer 2")

    with gr.Row():
        with gr.Column():
            output_text_1 = gr.Highlightedtext(
                show_legend=False, show_inline_category=False
            )
        with gr.Column():
            output_text_2 = gr.Highlightedtext(
                show_legend=False, show_inline_category=False
            )

    with gr.Row():
        output_table_1 = gr.Dataframe()
        output_table_2 = gr.Dataframe()

    tokenizer_name_1.change(
        tokenize, [user_input, tokenizer_name_1], [output_text_1, output_table_1]
    )

    tokenizer_name_2.change(
        tokenize, [user_input, tokenizer_name_2], [output_text_2, output_table_2]
    )

    user_input.change(
        tokenize_pair,
        [user_input, tokenizer_name_1, tokenizer_name_2],
        [output_text_1, output_table_1, output_text_2, output_table_2],
        show_api=False,
    )

    dropdown_examples.change(
        lambda example_idx: (
            examples[sorted(examples.keys())[example_idx]]["text"],
            examples[sorted(examples.keys())[example_idx]]["tokenizer_1"],
            examples[sorted(examples.keys())[example_idx]]["tokenizer_2"],
        ),
        dropdown_examples,
        [user_input, tokenizer_name_1, tokenizer_name_2],
        show_api=False,
    )

    demo.load(
        fn=on_load,
        inputs=[user_input],
        outputs=[user_input, tokenizer_name_1, tokenizer_name_2],
        js=get_window_url_params,
        show_api=False,
    )

if __name__ == "__main__":
    demo.launch(share=True)