Spaces:
Running
Running
File size: 6,015 Bytes
33f7995 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import json
from functools import lru_cache
from typing import Any
import gradio as gr
import pandas as pd
from loguru import logger
from playground_examples import (
default_tokenizer_name_1,
default_tokenizer_name_2,
default_user_input,
examples,
)
from playground_tokenizers import TokenizerFactory
@lru_cache
def run_tokenization(
text: str, tokenizer_name: str, color_num: int = 5, add_special_token: bool = False
) -> tuple[list[tuple[str, str]], int, pd.DataFrame]:
"""Tokenize an input text and return the tokens with their positions."""
logger.info(
"param="
+ json.dumps(
{"text": text, "tokenizer_type": tokenizer_name}, ensure_ascii=False
)
)
pos_tokens = []
tokenizer = TokenizerFactory().get_tokenizer(tokenizer_name)
encoding = tokenizer.encode(text) if add_special_token else tokenizer.encode(text)
table = []
for idx, token_id in enumerate(encoding):
decoded_text = tokenizer.decode([token_id])
decoded_text = decoded_text.replace(
" ", "β
"
) # replace space with β
for better visualization
pos_tokens.extend([(decoded_text, str(idx % color_num))])
try:
token = tokenizer.decode([token_id])[0]
except:
token = {v: k for k, v in tokenizer.get_vocab().items()}[token_id]
if isinstance(token, bytes):
try:
token_str = token.decode("utf-8")
except:
token_str = token.decode("utf-8", errors="ignore")
logger.error(
f"{idx}: decode_error: {tokenizer_name}, {token} {token_str}"
)
elif isinstance(token, str):
token_str = token
else:
logger.error(
f"{idx}: wrong type for token {token_id} {type(token)} "
+ json.dumps(
{"text": text, "tokenizer_type": tokenizer_name}, ensure_ascii=False
)
)
token_str = token
table.append({"TokenID": token_id, "Text": decoded_text})
table_df = pd.DataFrame(table)
logger.info(f"tokenizer_type={tokenizer_name}, Tokens={table[:4]}")
return pos_tokens, len(encoding), table_df
def tokenize(
text: str, tokenizer_name: str, color_num: int = 5
) -> tuple[dict[Any, Any], pd.DataFrame]:
"""Tokenize an input text."""
pos_tokens, num_tokens, table_df = run_tokenization(text, tokenizer_name, color_num)
return gr.update(value=pos_tokens, label=f"Tokens: {num_tokens}"), table_df
def tokenize_pair(
text: str, tokenizer_name_1: str, tokenizer_name_2: str, color_num: int = 5
):
"""input_text.change."""
pos_tokens_1, table_df_1 = tokenize(
text=text, tokenizer_name=tokenizer_name_1, color_num=color_num
)
pos_tokens_2, table_df_2 = tokenize(
text=text, tokenizer_name=tokenizer_name_2, color_num=color_num
)
return pos_tokens_1, table_df_1, pos_tokens_2, table_df_2
def on_load(url_params: str, request: gr.Request | None = None) -> tuple[str, str, str]:
"""Function triggered on page load to get URL parameters."""
text = default_user_input
tokenizer_type_1 = default_tokenizer_name_1
tokenizer_type_2 = default_tokenizer_name_2
return text, tokenizer_type_1, tokenizer_type_2
get_window_url_params = """
function(url_params) {
const params = new URLSearchParams(window.location.search);
url_params = JSON.stringify(Object.fromEntries(params));
return url_params;
}
"""
all_tokenizer_name = [
(config.name_display, config.name_or_path)
for config in TokenizerFactory().all_tokenizer_configs
]
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("## Input Text")
dropdown_examples = gr.Dropdown(
sorted(examples.keys()),
value="Examples",
type="index",
allow_custom_value=True,
show_label=False,
container=False,
scale=0,
elem_classes="example-style",
)
user_input = gr.Textbox(
label="Input Text",
lines=5,
show_label=False,
)
with gr.Row():
with gr.Column(scale=6), gr.Group():
tokenizer_name_1 = gr.Dropdown(all_tokenizer_name, label="Tokenizer 1")
with gr.Column(scale=6), gr.Group():
tokenizer_name_2 = gr.Dropdown(all_tokenizer_name, label="Tokenizer 2")
with gr.Row():
with gr.Column():
output_text_1 = gr.Highlightedtext(
show_legend=False, show_inline_category=False
)
with gr.Column():
output_text_2 = gr.Highlightedtext(
show_legend=False, show_inline_category=False
)
with gr.Row():
output_table_1 = gr.Dataframe()
output_table_2 = gr.Dataframe()
tokenizer_name_1.change(
tokenize, [user_input, tokenizer_name_1], [output_text_1, output_table_1]
)
tokenizer_name_2.change(
tokenize, [user_input, tokenizer_name_2], [output_text_2, output_table_2]
)
user_input.change(
tokenize_pair,
[user_input, tokenizer_name_1, tokenizer_name_2],
[output_text_1, output_table_1, output_text_2, output_table_2],
show_api=False,
)
dropdown_examples.change(
lambda example_idx: (
examples[sorted(examples.keys())[example_idx]]["text"],
examples[sorted(examples.keys())[example_idx]]["tokenizer_1"],
examples[sorted(examples.keys())[example_idx]]["tokenizer_2"],
),
dropdown_examples,
[user_input, tokenizer_name_1, tokenizer_name_2],
show_api=False,
)
demo.load(
fn=on_load,
inputs=[user_input],
outputs=[user_input, tokenizer_name_1, tokenizer_name_2],
js=get_window_url_params,
show_api=False,
)
if __name__ == "__main__":
demo.launch(share=True)
|