File size: 5,870 Bytes
33f7995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from dataclasses import dataclass, field
from enum import Enum, auto
from typing import Any

import tiktoken
from loguru import logger
from transformers import AutoTokenizer


class TokenizerImpl(Enum):
    BertTokenizer = "wordpiece.BertTokenizer"
    ByteLevelBPETokenizer = "byte_level_bpe"
    SentencePieceBPETokenizer = "sentencepiece_bpe"

    SentencePiece = auto()
    byte_level_bpe = auto()

    TikToken = auto()


@dataclass
class TokenizerConfig:
    """Tokenizer Configuration"""

    name_or_path: str
    name_display: str | None = None
    impl: TokenizerImpl | None = None
    org: str | None = None
    link: str | None = None
    desc: str | None = None
    meta: str | None = None
    level: str | None = None
    lang: str | None = None
    init_kwargs: dict[str, Any] = field(default_factory=dict)

    def __post_init__(self):
        if self.link is None:
            self.link = "https://huggingface.co/" + self.name_or_path
        if self.name_display is None:
            self.name_display = self.name_or_path

    @classmethod
    def init_from_json_file(cls, json_filepath: str) -> "TokenizerConfig":
        pass

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False

    def __hash__(self):
        return hash(self.name_or_path)


tokenizer_configs = [
    TokenizerConfig(
        "google-bert/bert-base-uncased",
        impl=TokenizerImpl.BertTokenizer,
        org="Google",
        desc="first add whitespace around any CJK character, then perform wordpiece tokenization.",
    ),
    TokenizerConfig(
        "google-bert/bert-base-multilingual-uncased",
        impl=TokenizerImpl.BertTokenizer,
        org="Google",
    ),
    TokenizerConfig(
        "openai-community/gpt2", impl=TokenizerImpl.SentencePiece, org="OpenAI"
    ),
    TokenizerConfig(
        "EleutherAI/gpt-neox-20b", impl=TokenizerImpl.SentencePiece, org="EleutherAI"
    ),
    TokenizerConfig(
        "Qwen/Qwen1.5-14B", impl=TokenizerImpl.SentencePiece, org="Alibaba"
    ),
    TokenizerConfig(
        "Qwen/Qwen2.5-72B", impl=TokenizerImpl.SentencePiece, org="Alibaba"
    ),
    TokenizerConfig(
        "google-t5/t5-large",
        name_display="google-t5/t5",
        impl=TokenizerImpl.SentencePiece,
        org="Google",
    ),
    TokenizerConfig("CohereForAI/aya-101", org="Cohere For AI"),
    TokenizerConfig(
        "meta-llama/Llama-3.2-3B-Instruct", impl=TokenizerImpl.SentencePiece, org="Meta"
    ),
    TokenizerConfig(
        "openai/gpt-4o",
        impl=TokenizerImpl.TikToken,
        org="OpenAI",
        link="https://github.com/openai/tiktoken",
    ),
    TokenizerConfig("google/mt5-large", org="Google"),
    TokenizerConfig("deepseek-ai/deepseek-coder-33b-instruct", org="DeepSeek"),
    TokenizerConfig("deepseek-ai/DeepSeek-V3", org="DeepSeek"),
]

assert len(set([config.name_display for config in tokenizer_configs])) == len(
    tokenizer_configs
)
assert len(set([config.name_or_path for config in tokenizer_configs])) == len(
    tokenizer_configs
)
assert len(
    set([config.name_or_path.split("/")[-1] for config in tokenizer_configs])
) == len(tokenizer_configs)


class TokenizerFactory:
    def __init__(self):
        self.all_tokenizer_configs = sorted(
            tokenizer_configs, key=lambda k: k.name_display
        )
        self.all_tokenizer_names = [
            config.name_or_path for config in self.all_tokenizer_configs
        ]
        self.name_to_config_list = [
            {config.name_or_path: config for config in self.all_tokenizer_configs},
            {config.name_display: config for config in self.all_tokenizer_configs},
            {
                config.name_display.split("/")[-1]: config
                for config in self.all_tokenizer_configs
            },
        ]
        self.tokenizer_cache = {}

    def get_tokenizer_config(self, tokenizer_name: str) -> TokenizerConfig | None:
        for name_to_config in self.name_to_config_list:
            if tokenizer_name in name_to_config:
                return name_to_config[tokenizer_name]
        return None

    def get_tokenizer(self, tokenizer_name: str) -> AutoTokenizer:
        """Get the tokenizer by its name, loading it if not already cached."""
        tokenizer_config = self.get_tokenizer_config(tokenizer_name)

        if tokenizer_config in self.tokenizer_cache:
            return self.tokenizer_cache[tokenizer_config]

        tokenizer = self.load_tokenizer(tokenizer_config)

        self.tokenizer_cache[tokenizer_config] = tokenizer
        return tokenizer

    def get_name_with_hyperlink(self, tokenizer_name: str) -> str:
        def model_hyperlink(link, model_name):
            model_name = model_name
            return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'

        tokenizer_config = self.get_tokenizer_config(tokenizer_name)
        return model_hyperlink(
            tokenizer_config.link, tokenizer_config.name_display.split("/")[-1]
        )

    def load_tokenizer(self, tokenizer_config):
        if tokenizer_config == None:
            print("dd")
        logger.info(f"loading tokenizer {tokenizer_config.name_or_path}")
        if (
            tokenizer_config.impl == TokenizerImpl.TikToken
            and "openai" in tokenizer_config.name_or_path
        ):
            tokenizer = tiktoken.encoding_for_model(
                tokenizer_config.name_or_path.replace("openai/", "")
            )
        else:
            tokenizer = AutoTokenizer.from_pretrained(
                tokenizer_config.name_or_path,
                trust_remote_code=True,
                **tokenizer_config.init_kwargs,
            )
        return tokenizer