Spaces:
Sleeping
Sleeping
Added reprompting loop workflow for new tools.
Browse files- client/tool_workflows.py +215 -0
client/tool_workflows.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''Functions to handle re-prompting and final reply generation
|
| 2 |
+
downstream of LLM tool calls.'''
|
| 3 |
+
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
import queue
|
| 7 |
+
from anthropic.types import text_block
|
| 8 |
+
from client import prompts
|
| 9 |
+
from client.anthropic_bridge import AnthropicBridge
|
| 10 |
+
|
| 11 |
+
INTERMEDIATE_REPLY_HINTS = {
|
| 12 |
+
'context_search': 'Let me find some additional context before I generate a final answer.',
|
| 13 |
+
'find_article': 'I will find the title of that article.',
|
| 14 |
+
'get_summary': 'I will summarize that article',
|
| 15 |
+
'get_link': 'I will get the link to that article'
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
async def tool_loop(
|
| 19 |
+
user_query: str,
|
| 20 |
+
prior_reply: str,
|
| 21 |
+
result: list,
|
| 22 |
+
bridge: AnthropicBridge,
|
| 23 |
+
output_queue: queue.Queue,
|
| 24 |
+
dialog: logging.Logger
|
| 25 |
+
) -> None:
|
| 26 |
+
|
| 27 |
+
'''Re-prompts the LLM in a loop until it generates a final reply based on tool output.
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
user_query: the original user input that provoked the tool call
|
| 31 |
+
result: the complete model reply containing the tool call
|
| 32 |
+
bridge: AnthropicBridge class instance
|
| 33 |
+
output_queue: queue to send results back to Gradio UI
|
| 34 |
+
dialog: logger instance to record intermediate responses and internal dialog
|
| 35 |
+
'''
|
| 36 |
+
|
| 37 |
+
tool_call = result['tool_call']
|
| 38 |
+
tool_name = tool_call['name']
|
| 39 |
+
|
| 40 |
+
if tool_name == 'get_feed':
|
| 41 |
+
reply = await get_feed_call(
|
| 42 |
+
user_query,
|
| 43 |
+
result,
|
| 44 |
+
bridge,
|
| 45 |
+
output_queue,
|
| 46 |
+
dialog
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
output_queue.put(reply)
|
| 50 |
+
|
| 51 |
+
else:
|
| 52 |
+
tool_call = result['tool_call']
|
| 53 |
+
tool_name = tool_call['name']
|
| 54 |
+
tool_parameters = tool_call['parameters']
|
| 55 |
+
response_content = result['llm_response'].content[0]
|
| 56 |
+
|
| 57 |
+
if isinstance(response_content, text_block.TextBlock):
|
| 58 |
+
intermediate_reply = response_content.text
|
| 59 |
+
else:
|
| 60 |
+
intermediate_reply = INTERMEDIATE_REPLY_HINTS[tool_name]
|
| 61 |
+
|
| 62 |
+
dialog.info('LLM intermediate reply: %s', intermediate_reply)
|
| 63 |
+
dialog.info('MCP: called %s', tool_name)
|
| 64 |
+
|
| 65 |
+
tool_result = json.loads(result['tool_result'].content)['text']
|
| 66 |
+
|
| 67 |
+
prompt = prompts.OTHER_TOOL_PROMPT.substitute(
|
| 68 |
+
user_query=user_query,
|
| 69 |
+
prior_reply=prior_reply,
|
| 70 |
+
intermediate_reply=intermediate_reply,
|
| 71 |
+
tool_name=tool_name,
|
| 72 |
+
tool_parameters=tool_parameters,
|
| 73 |
+
tool_result=tool_result
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
dialog.info('System: re-prompting LLM with return from %s call', tool_name)
|
| 77 |
+
|
| 78 |
+
while True:
|
| 79 |
+
|
| 80 |
+
reply = await other_call(
|
| 81 |
+
prompt,
|
| 82 |
+
bridge,
|
| 83 |
+
dialog
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
if 'final reply' in reply:
|
| 87 |
+
final_reply = reply['final reply']
|
| 88 |
+
dialog.info('LLM final reply: %s ...', final_reply[:50])
|
| 89 |
+
output_queue.put(final_reply)
|
| 90 |
+
break
|
| 91 |
+
|
| 92 |
+
else:
|
| 93 |
+
prompt = reply['new_prompt']
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
async def get_feed_call(
|
| 97 |
+
user_query: str,
|
| 98 |
+
result: list,
|
| 99 |
+
bridge: AnthropicBridge,
|
| 100 |
+
output_queue: queue.Queue,
|
| 101 |
+
dialog: logging.Logger
|
| 102 |
+
) -> str:
|
| 103 |
+
|
| 104 |
+
'''Re-prompts LLM after a call to get_feed().
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
user_query: the original user input that provoked the tool call
|
| 108 |
+
result: the complete model reply containing the tool call
|
| 109 |
+
bridge: AnthropicBridge class instance
|
| 110 |
+
output_queue: queue to send results back to Gradio UI
|
| 111 |
+
dialog: logger instance to record intermediate responses and internal dialog
|
| 112 |
+
'''
|
| 113 |
+
|
| 114 |
+
tool_call = result['tool_call']
|
| 115 |
+
tool_name = tool_call['name']
|
| 116 |
+
tool_parameters = tool_call['parameters']
|
| 117 |
+
website = tool_parameters['website']
|
| 118 |
+
response_content = result['llm_response'].content[0]
|
| 119 |
+
|
| 120 |
+
if isinstance(response_content, text_block.TextBlock):
|
| 121 |
+
intermediate_reply = response_content.text
|
| 122 |
+
else:
|
| 123 |
+
intermediate_reply = f'I Will check the {website} RSS feed for you'
|
| 124 |
+
|
| 125 |
+
dialog.info('LLM intermediate reply: %s', intermediate_reply)
|
| 126 |
+
dialog.info('MCP: called %s on %s', tool_name, website)
|
| 127 |
+
|
| 128 |
+
articles = json.loads(result['tool_result'].content)['text']
|
| 129 |
+
|
| 130 |
+
prompt = prompts.GET_FEED_PROMPT.substitute(
|
| 131 |
+
website=website,
|
| 132 |
+
user_query=user_query,
|
| 133 |
+
intermediate_reply=intermediate_reply,
|
| 134 |
+
articles=articles
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
input_message =[{
|
| 138 |
+
'role': 'user',
|
| 139 |
+
'content': prompt
|
| 140 |
+
}]
|
| 141 |
+
|
| 142 |
+
dialog.info('System: re-prompting LLM with return from %s call', tool_name)
|
| 143 |
+
|
| 144 |
+
result = await bridge.process_query(
|
| 145 |
+
prompts.REPROMPTING_SYSTEM_PROMPT,
|
| 146 |
+
input_message
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
try:
|
| 150 |
+
|
| 151 |
+
reply = result['llm_response'].content[0].text
|
| 152 |
+
|
| 153 |
+
except (IndexError, AttributeError):
|
| 154 |
+
reply = 'No final reply from model'
|
| 155 |
+
|
| 156 |
+
dialog.info('LLM final reply: %s ...', reply[:50])
|
| 157 |
+
|
| 158 |
+
output_queue.put(reply)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
async def other_call(
|
| 162 |
+
prompt: list[dict],
|
| 163 |
+
bridge: AnthropicBridge,
|
| 164 |
+
dialog: logging.Logger
|
| 165 |
+
) -> dict:
|
| 166 |
+
|
| 167 |
+
'''Re-prompts LLM after a call to get_feed().
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
prompt: prompt to to send the LLM
|
| 171 |
+
result: the complete model reply containing the tool call
|
| 172 |
+
bridge: AnthropicBridge class instance
|
| 173 |
+
output_queue: queue to send results back to Gradio UI
|
| 174 |
+
dialog: logger instance to record intermediate responses and internal dialog
|
| 175 |
+
'''
|
| 176 |
+
|
| 177 |
+
input_message =[{
|
| 178 |
+
'role': 'user',
|
| 179 |
+
'content': prompt
|
| 180 |
+
}]
|
| 181 |
+
|
| 182 |
+
result = await bridge.process_query(
|
| 183 |
+
prompts.REPROMPTING_SYSTEM_PROMPT,
|
| 184 |
+
input_message
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
if result['tool_result']:
|
| 188 |
+
|
| 189 |
+
tool_call = result['tool_call']
|
| 190 |
+
tool_name = tool_call['name']
|
| 191 |
+
tool_parameters = tool_call['parameters']
|
| 192 |
+
response_content = result['llm_response'].content[0]
|
| 193 |
+
|
| 194 |
+
if isinstance(response_content, text_block.TextBlock):
|
| 195 |
+
intermediate_reply = response_content.text
|
| 196 |
+
else:
|
| 197 |
+
intermediate_reply = INTERMEDIATE_REPLY_HINTS[tool_name]
|
| 198 |
+
|
| 199 |
+
dialog.info('LLM intermediate reply: %s', intermediate_reply)
|
| 200 |
+
dialog.info('MCP: called %s', tool_name)
|
| 201 |
+
|
| 202 |
+
tool_result = json.loads(result['tool_result'].content)['text']
|
| 203 |
+
|
| 204 |
+
prompt += f'agent: {intermediate_reply}\n'
|
| 205 |
+
prompt += f'function call: {tool_name}("{tool_parameters}")'
|
| 206 |
+
prompt += f'function return: {tool_result}'
|
| 207 |
+
|
| 208 |
+
dialog.info('System: re-prompting LLM with return from %s call', tool_name)
|
| 209 |
+
|
| 210 |
+
return {'new_prompt': prompt}
|
| 211 |
+
|
| 212 |
+
else:
|
| 213 |
+
|
| 214 |
+
reply = result['llm_response'].content[0].text
|
| 215 |
+
return {'final reply': reply}
|