Spaces:
Sleeping
Sleeping
File size: 13,666 Bytes
613e758 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import requests
import pandas as pd
import time
from datetime import datetime
from dotenv import load_dotenv
import os
import gradio as gr
load_dotenv()
XAI_API_KEY = os.getenv("XAI_API_KEY")
# Global variable to store the most recent analysis results
GLOBAL_ANALYSIS_STORAGE = {
'subreddit': None,
'data': None
}
def call_LLM(query):
return call_groq(query)
def call_groq(query):
from groq import Groq
client = Groq()
chat_completion = client.chat.completions.create(
messages=[
{"role": "system", "content": query}
],
model="llama3-8b-8192",
temperature=0.5,
max_tokens=1024,
top_p=1,
stop=None,
stream=False,
)
return chat_completion.choices[0].message.content
def process(row):
"""
Format this so that the model sees full post for now
"""
# title
# comment_body
prompt = f"The below is a reddit post. Take a look and tell me if there is a business problem to be solved here ||| title: {row['post_title']} ||| comment: {row['comment_body']}"
return call_LLM(prompt)
# ... [Keep previous helper functions like extract_comment_data, fetch_top_comments, fetch_subreddits, fetch_top_posts] ...
def extract_comment_data(comment, post_info):
"""Extract relevant data from a comment"""
return {
'subreddit': post_info['subreddit'],
'post_title': post_info['title'],
'post_score': post_info['score'],
'post_created_utc': post_info['created_utc'],
'comment_id': comment['data'].get('id'),
'comment_author': comment['data'].get('author'),
'comment_body': comment['data'].get('body'),
'comment_score': comment['data'].get('score', 0),
'comment_created_utc': datetime.fromtimestamp(comment['data'].get('created_utc', 0)),
'post_url': post_info['url'],
'comment_url': f"https://www.reddit.com{post_info['permalink']}{comment['data'].get('id')}",
}
def fetch_top_comments(post_df, num_comments=2):
"""
Fetch top comments for each post in the dataframe, sorted by upvotes
"""
all_comments = []
total_posts = len(post_df)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
print(f"\nFetching top {num_comments} most upvoted comments for {total_posts} posts...")
for idx, post in post_df.iterrows():
print(f"\nProcessing post {idx + 1}/{total_posts}")
print(f"Title: {post['title'][:100]}...")
print(f"Post Score: {post['score']}, Number of Comments: {post['num_comments']}")
try:
json_url = post['permalink'].replace('https://www.reddit.com', '') + '.json'
url = f'https://www.reddit.com{json_url}'
response = requests.get(url, headers=headers)
response.raise_for_status()
data = response.json()
if len(data) > 1:
comments_data = data[1]['data']['children']
# Filter out non-comment entries and extract scores
valid_comments = [
comment for comment in comments_data
if comment['kind'] == 't1' and comment['data'].get('score') is not None
]
# Sort comments by score (upvotes) in descending order
sorted_comments = sorted(
valid_comments,
key=lambda x: x['data'].get('score', 0),
reverse=True
)
# Take only the top N comments
top_comments = sorted_comments[:num_comments]
# Print comment scores for verification
print("\nTop comment scores for this post:")
for i, comment in enumerate(top_comments, 1):
score = comment['data'].get('score', 0)
print(f"Comment {i}: {score} upvotes")
# Add to main list
for comment in top_comments:
all_comments.append(extract_comment_data(comment, post))
time.sleep(2)
except requests.exceptions.RequestException as e:
print(f"Error fetching comments for post {idx + 1}: {e}")
continue
# Create DataFrame and sort
comments_df = pd.DataFrame(all_comments)
if not comments_df.empty:
# Verify sorting by showing top comments for each post
print("\nVerification of comment sorting:")
for post_title in comments_df['post_title'].unique():
post_comments = comments_df[comments_df['post_title'] == post_title]
print(f"\nPost: {post_title[:100]}...")
print("Comment scores:", post_comments['comment_score'].tolist())
return comments_df
def fetch_subreddits(limit=10, min_subscribers=1000):
"""
Fetch subreddits from Reddit
Args:
limit (int): Number of subreddits to fetch
min_subscribers (int): Minimum number of subscribers required
"""
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
subreddits_data = []
after = None
while len(subreddits_data) < limit:
try:
url = f'https://www.reddit.com/subreddits/popular.json?limit=100'
if after:
url += f'&after={after}'
print(f"Fetching subreddits... Current count: {len(subreddits_data)}")
response = requests.get(url, headers=headers)
response.raise_for_status()
data = response.json()
for subreddit in data['data']['children']:
subreddit_data = subreddit['data']
if subreddit_data.get('subscribers', 0) >= min_subscribers:
sub_info = {
'display_name': subreddit_data.get('display_name'),
'display_name_prefixed': subreddit_data.get('display_name_prefixed'),
'title': subreddit_data.get('title'),
'subscribers': subreddit_data.get('subscribers', 0),
'active_users': subreddit_data.get('active_user_count', 0),
'created_utc': datetime.fromtimestamp(subreddit_data.get('created_utc', 0)),
'description': subreddit_data.get('description'),
'subreddit_type': subreddit_data.get('subreddit_type'),
'over18': subreddit_data.get('over18', False),
'url': f"https://www.reddit.com/r/{subreddit_data.get('display_name')}/"
}
subreddits_data.append(sub_info)
after = data['data'].get('after')
if not after:
print("Reached end of listings")
break
time.sleep(2)
except requests.exceptions.RequestException as e:
print(f"Error fetching data: {e}")
break
return pd.DataFrame(subreddits_data)
def fetch_top_posts(subreddit, limit=5):
"""
Fetch top posts from a subreddit using Reddit's JSON API
Args:
subreddit (str): Name of the subreddit without the 'r/'
limit (int): Maximum number of posts to fetch
Returns:
list: List of post dictionaries
"""
posts_data = []
url = f'https://www.reddit.com/r/{subreddit}/top.json?t=all&limit={limit}'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
data = response.json()
for post in data['data']['children']:
post_data = post['data']
posts_data.append({
'subreddit': subreddit,
'title': post_data.get('title'),
'score': post_data.get('score'),
'num_comments': post_data.get('num_comments'),
'created_utc': datetime.fromtimestamp(post_data.get('created_utc', 0)),
'url': post_data.get('url'),
'permalink': 'https://www.reddit.com' + post_data.get('permalink', '')
})
time.sleep(2)
except requests.exceptions.RequestException as e:
print(f"Error fetching posts from r/{subreddit}: {e}")
return pd.DataFrame(posts_data)
def show_dataframe(subreddit):
# Fetch top posts
top_posts = fetch_top_posts(subreddit)
# Fetch top comments for these posts
data_to_analyze = fetch_top_comments(top_posts)
# Process and analyze each comment
responses = []
for _, row in data_to_analyze.iterrows():
print(f"{_} done")
responses.append(process(row))
# Add analysis to the dataframe
data_to_analyze['analysis'] = responses
# Store in global storage for quick access
GLOBAL_ANALYSIS_STORAGE['subreddit'] = subreddit
GLOBAL_ANALYSIS_STORAGE['data'] = data_to_analyze
return data_to_analyze
def launch_interface():
# Fetch list of subreddits for user to choose from
sub_reddits = fetch_subreddits()
subreddit_list = sub_reddits["display_name"].tolist()
# Create Gradio Blocks for more flexible interface
with gr.Blocks() as demo:
# Title and description
gr.Markdown("# Reddit Business Problem Analyzer")
gr.Markdown("Discover potential business opportunities from Reddit discussions")
# Subreddit selection
subreddit_dropdown = gr.Dropdown(
choices=subreddit_list,
label="Select Subreddit",
info="Choose a subreddit to analyze"
)
# Outputs
with gr.Row():
with gr.Column():
# Overall Analysis Section
gr.Markdown("## Overall Analysis")
# overall_analysis = gr.Textbox(
# label="Aggregated Business Insights",
# interactive=False,
# lines=5
# )
# Results Table
results_table = gr.Dataframe(
label="Analysis Results",
headers=["Index", "Post Title", "Comment", "Analysis"],
interactive=False
)
# Row Selection
row_index = gr.Number(
label="Select Row Index for Detailed View",
precision=0
)
with gr.Column():
# Detailed Post Analysis
gr.Markdown("## Detailed Post Analysis")
detailed_analysis = gr.Markdown(
label="Detailed Insights"
)
# Function to update posts when subreddit is selected
def update_posts(subreddit):
# Fetch and analyze data
data_to_analyze = show_dataframe(subreddit)
# Prepare table data
table_data = data_to_analyze[['post_title', 'comment_body', 'analysis']].reset_index()
table_data.columns = ['Index', 'Post Title', 'Comment', 'Analysis']
return table_data, None
# Function to show detailed analysis for a specific row
def show_row_details(row_index):
# Ensure we have data loaded
if GLOBAL_ANALYSIS_STORAGE['data'] is None:
return "Please select a subreddit first."
try:
# Convert to integer and subtract 1 (since index is 0-based)
row_index = int(row_index)
# Retrieve the specific row
row_data = GLOBAL_ANALYSIS_STORAGE['data'].loc[row_index]
# Format detailed view
detailed_view = f"""
### Post Details
**Title:** {row_data.get('post_title', 'N/A')}
**Comment:** {row_data.get('comment_body', 'N/A')}
**Comment Score:** {row_data.get('comment_score', 'N/A')}
**Analysis:** {row_data.get('analysis', 'No analysis available')}
**Post URL:** {row_data.get('post_url', 'N/A')}
**Comment URL:** {row_data.get('comment_url', 'N/A')}
"""
return detailed_view
except (KeyError, ValueError, TypeError) as e:
return f"Error retrieving row details: {str(e)}"
# Event Listeners
subreddit_dropdown.change(
fn=update_posts,
inputs=subreddit_dropdown,
outputs=[results_table, detailed_analysis]
)
row_index.change(
fn=show_row_details,
inputs=row_index,
outputs=detailed_analysis
)
return demo
# Launch the interface
if __name__ == "__main__":
interface = launch_interface()
interface.launch(share=True) |