Commit
·
53d42f8
1
Parent(s):
46d6462
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
from scipy.special import softmax
|
5 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
6 |
+
|
7 |
+
|
8 |
+
# Requirements
|
9 |
+
model_path = "gr8testgad-1/sentiment_analysis"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
11 |
+
config = AutoConfig.from_pretrained(model_path)
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
13 |
+
|
14 |
+
|
15 |
+
# Preprocess text (username and link placeholders)
|
16 |
+
def preprocess(text):
|
17 |
+
new_text = []
|
18 |
+
for t in text.split(" "):
|
19 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
20 |
+
t = 'http' if t.startswith('http') else t
|
21 |
+
new_text.append(t)
|
22 |
+
return " ".join(new_text)
|
23 |
+
|
24 |
+
|
25 |
+
def sent_analysis(text):
|
26 |
+
text = preprocess(text)
|
27 |
+
|
28 |
+
# PyTorch-based models
|
29 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
30 |
+
output = model(**encoded_input)
|
31 |
+
scores_ = output[0][0].detach().numpy()
|
32 |
+
scores_ = softmax(scores_)
|
33 |
+
|
34 |
+
# Format output dict of scores
|
35 |
+
labels = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
|
36 |
+
scores = {labels[i]: float(s) for i, s in enumerate(scores_)}
|
37 |
+
return scores
|
38 |
+
|
39 |
+
demo = gr.Interface(
|
40 |
+
fn=sent_analysis,
|
41 |
+
inputs=gr.Textbox(placeholder="Share your thoughts on COVID vaccines..."),
|
42 |
+
outputs="label",
|
43 |
+
interpretation="default",
|
44 |
+
examples=[
|
45 |
+
["I feel confident about covid vaccines"],
|
46 |
+
["Will you take the jab"],
|
47 |
+
["I like the covid vaccines"],
|
48 |
+
["The covid vaccines are effective"]
|
49 |
+
],
|
50 |
+
title="COVID Vaccine Sentiment Analysis",
|
51 |
+
description="An AI model that predicts sentiment about COVID vaccines, providing labels and probabilities for 'NEGATIVE', 'NEUTRAL', and 'POSITIVE' sentiments.",
|
52 |
+
theme="default",
|
53 |
+
live=True
|
54 |
+
)
|
55 |
+
|
56 |
+
demo.launch()
|
57 |
+
|