Spaces:
Runtime error
Runtime error
add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from peft import AutoPeftModelForCausalLM
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
7 |
+
from threading import Thread
|
8 |
+
|
9 |
+
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--model_path_or_id",
|
12 |
+
type=str,
|
13 |
+
default = "NousResearch/Llama-2-7b-hf",
|
14 |
+
required = False,
|
15 |
+
help = "Model ID or path to saved model")
|
16 |
+
|
17 |
+
parser.add_argument("--lora_path",
|
18 |
+
type=str,
|
19 |
+
default = None,
|
20 |
+
required = False,
|
21 |
+
help = "Path to the saved lora adapter")
|
22 |
+
|
23 |
+
args = parser.parse_args()
|
24 |
+
|
25 |
+
if args.lora_path:
|
26 |
+
# load base LLM model with PEFT Adapter
|
27 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
28 |
+
args.lora_path,
|
29 |
+
low_cpu_mem_usage=True,
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
load_in_4bit=True,
|
32 |
+
)
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(args.lora_path)
|
34 |
+
else:
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
args.model_path_or_id,
|
37 |
+
low_cpu_mem_usage=True,
|
38 |
+
torch_dtype=torch.float16,
|
39 |
+
load_in_4bit=True
|
40 |
+
)
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_path_or_id)
|
42 |
+
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
|
45 |
+
gr.HTML(f"""
|
46 |
+
<h2> Instruction Chat Bot Demo </h2>
|
47 |
+
<h3> Model ID : {args.model_path_or_id} </h3>
|
48 |
+
<h3> Peft Adapter : {args.lora_path} </h3>
|
49 |
+
""")
|
50 |
+
|
51 |
+
chat_history = gr.Chatbot(label = "Instruction Bot")
|
52 |
+
msg = gr.Textbox(label = "Instruction")
|
53 |
+
with gr.Accordion(label = "Generation Parameters", open = False):
|
54 |
+
prompt_format = gr.Textbox(
|
55 |
+
label = "Formatting prompt",
|
56 |
+
value = "{instruction}",
|
57 |
+
lines = 8)
|
58 |
+
with gr.Row():
|
59 |
+
max_new_tokens = gr.Number(minimum = 25, maximum = 500, value = 100, label = "Max New Tokens")
|
60 |
+
temperature = gr.Slider(minimum = 0, maximum = 1.0, value = 0.7, label = "Temperature")
|
61 |
+
|
62 |
+
clear = gr.ClearButton([msg, chat_history])
|
63 |
+
|
64 |
+
def user(user_message, history):
|
65 |
+
return "", [[user_message, None]]
|
66 |
+
|
67 |
+
def bot(chat_history, prompt_format, max_new_tokens, temperature):
|
68 |
+
|
69 |
+
# Format the instruction using the format string with key
|
70 |
+
# {instruction}
|
71 |
+
formatted_inst = prompt_format.format(
|
72 |
+
instruction = chat_history[-1][0]
|
73 |
+
)
|
74 |
+
|
75 |
+
# Tokenize the input
|
76 |
+
input_ids = tokenizer(
|
77 |
+
formatted_inst,
|
78 |
+
return_tensors="pt",
|
79 |
+
truncation=True).input_ids.cuda()
|
80 |
+
|
81 |
+
# Support for streaming of tokens within generate requires
|
82 |
+
# generation to run in a separate thread
|
83 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt = True)
|
84 |
+
generation_kwargs = dict(
|
85 |
+
input_ids = input_ids,
|
86 |
+
streamer = streamer,
|
87 |
+
max_new_tokens=max_new_tokens,
|
88 |
+
do_sample=True,
|
89 |
+
top_p=0.9,
|
90 |
+
temperature=temperature,
|
91 |
+
use_cache=True
|
92 |
+
)
|
93 |
+
|
94 |
+
thread = Thread(target = model.generate, kwargs = generation_kwargs)
|
95 |
+
thread.start()
|
96 |
+
chat_history[-1][1] = ""
|
97 |
+
for new_text in streamer:
|
98 |
+
chat_history[-1][1] += new_text
|
99 |
+
yield chat_history
|
100 |
+
|
101 |
+
msg.submit(user,[msg, chat_history], [msg, chat_history], queue = False).then(
|
102 |
+
bot, [chat_history, prompt_format, max_new_tokens, temperature], chat_history
|
103 |
+
)
|
104 |
+
|
105 |
+
demo.queue()
|
106 |
+
demo.launch()
|