import gradio as gr import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # Load dataset data = pd.read_csv('knn.csv') # Separate features and target x = data.drop('price_range', axis=1).values # Features y = data['price_range'].values # Target # Train-test split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0) # Train the KNN classifier knnClassifier = KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=1) knnClassifier.fit(x_train, y_train) # Define the prediction function for Gradio def predict_price_range(battery_power, blue, clock_speed, dual_sim, fc, four_g, int_memory, m_dep, mobile_wt, n_cores, pc, px_height, px_width, ram, sc_h, sc_w, talk_time, three_g, touch_screen, wifi): # Prepare the input for prediction input_data = np.array([[battery_power, blue, clock_speed, dual_sim, fc, four_g, int_memory, m_dep, mobile_wt, n_cores, pc, px_height, px_width, ram, sc_h, sc_w, talk_time, three_g, touch_screen, wifi]]) # Make prediction using the trained KNN model prediction = knnClassifier.predict(input_data) # Return the predicted price range price_ranges = ['Low', 'Medium', 'High', 'Very High'] # Modify this according to your dataset return f"Predicted Price Range: {price_ranges[prediction[0]]}" # Create Gradio interface with all the features as inputs using the updated Gradio components interface = gr.Interface( fn=predict_price_range, # Function that does the prediction inputs=[ gr.Slider(500, 2000, step=1, label="Battery Power"), gr.Checkbox(label="Bluetooth"), # 1 for Yes, 0 for No gr.Slider(0.5, 3.0, step=0.1, label="Clock Speed"), gr.Checkbox(label="Dual SIM"), # 1 for Yes, 0 for No gr.Slider(0, 20, step=1, label="Front Camera (FC)"), gr.Checkbox(label="4G"), # 1 for Yes, 0 for No gr.Slider(4, 64, step=1, label="Internal Memory (GB)"), gr.Slider(0.1, 1.0, step=0.1, label="Mobile Depth (cm)"), gr.Slider(80, 250, step=1, label="Mobile Weight (g)"), gr.Slider(1, 8, step=1, label="Number of Cores"), gr.Slider(0, 20, step=1, label="Primary Camera (PC)"), gr.Slider(0, 1960, step=1, label="Pixel Height"), gr.Slider(500, 2000, step=1, label="Pixel Width"), gr.Slider(500, 4000, step=1, label="RAM"), gr.Slider(5, 20, step=1, label="Screen Height (cm)"), gr.Slider(0, 18, step=1, label="Screen Width (cm)"), gr.Slider(2, 20, step=1, label="Talk Time (hours)"), gr.Checkbox(label="3G"), # 1 for Yes, 0 for No gr.Checkbox(label="Touch Screen"), # 1 for Yes, 0 for No gr.Checkbox(label="WiFi"), # 1 for Yes, 0 for No ], outputs=gr.Textbox(label="Predicted Price Range"), # Output format title="Mobile Price Range Prediction", description="Predict the price range of a mobile based on its specifications." ) # Launch the Gradio app interface.launch()