File size: 6,109 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss
@register_criterion("label_smoothed_cross_entropy_r3f")
class LabelSmoothedCrossEntropyR3FCriterion(FairseqCriterion):
def __init__(
self, task, sentence_avg, label_smoothing, eps, r3f_lambda, noise_type
):
super().__init__(task)
self.sentence_avg = sentence_avg
self.label_smoothing = label_smoothing
self.eps = eps
self.r3f_lambda = r3f_lambda
self.noise_type = noise_type
if self.noise_type in {"normal"}:
self.noise_sampler = torch.distributions.normal.Normal(
loc=0.0, scale=self.eps
)
elif self.noise_type == "uniform":
self.noise_sampler = torch.distributions.uniform.Uniform(
low=-self.eps, high=self.eps
)
else:
raise Exception(f"unrecognized noise type {self.noise_type}")
@staticmethod
def add_args(parser):
"""Add criterion-specific arguments to the parser."""
# fmt: off
parser.add_argument('--label-smoothing', default=0., type=float, metavar='D',
help='epsilon for label smoothing, 0 means no label smoothing')
parser.add_argument('--eps', type=float, default=1e-5,
help='noise eps')
parser.add_argument('--r3f-lambda', type=float, default=1.0,
help='lambda for combining logistic loss and noisy KL loss')
parser.add_argument('--noise-type', type=str, default='normal',
choices=['normal', 'uniform'],
help='type of noises')
# fmt: on
def _get_symm_kl(self, noised_logits, input_logits):
return (
F.kl_div(
F.log_softmax(noised_logits, dim=-1, dtype=torch.float32),
F.softmax(input_logits, dim=-1, dtype=torch.float32),
None,
None,
"sum",
)
+ F.kl_div(
F.log_softmax(input_logits, dim=-1, dtype=torch.float32),
F.softmax(noised_logits, dim=-1, dtype=torch.float32),
None,
None,
"sum",
)
) / noised_logits.size(0)
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
token_embeddings = model.encoder.embed_tokens(sample["net_input"]["src_tokens"])
input_logits, extra = model(**sample["net_input"])
loss, nll_loss = self.compute_loss(
model, (input_logits, extra), sample, reduce=reduce
)
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
if model.training:
noise = self.noise_sampler.sample(sample_shape=token_embeddings.shape).to(
token_embeddings
)
noised_embeddings = token_embeddings.clone() + noise
noised_logits, _ = model(
**sample["net_input"], token_embeddings=noised_embeddings
)
symm_kl = self._get_symm_kl(noised_logits, input_logits)
if model.training:
symm_kl = symm_kl * sample_size
loss = loss + self.r3f_lambda * symm_kl
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
}
if model.training:
logging_output.update(
symm_kl=utils.item(symm_kl.data) if reduce else symm_kl.data
)
return loss, sample_size, logging_output
def compute_loss(self, model, net_output, sample, reduce=True):
lprobs = model.get_normalized_probs(net_output, log_probs=True)
lprobs = lprobs.view(-1, lprobs.size(-1))
target = model.get_targets(sample, net_output).view(-1, 1)
loss, nll_loss = label_smoothed_nll_loss(
lprobs,
target,
self.label_smoothing,
ignore_index=self.padding_idx,
reduce=reduce,
)
return loss, nll_loss
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
symm_kl_sum = sum(log.get("symm_kl", 0) for log in logging_outputs)
metrics.log_scalar("symm_kl", symm_kl_sum / sample_size, sample_size, round=3)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
|