File size: 7,099 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from fairseq import checkpoint_utils, tasks
import sentencepiece as spm
import torch
try:
from simuleval import READ_ACTION, WRITE_ACTION, DEFAULT_EOS
from simuleval.agents import TextAgent
except ImportError:
print("Please install simuleval 'pip install simuleval'")
BOS_PREFIX = "\u2581"
class SimulTransTextAgentJA(TextAgent):
"""
Simultaneous Translation
Text agent for Japanese
"""
def __init__(self, args):
# Whether use gpu
self.gpu = getattr(args, "gpu", False)
# Max len
self.max_len = args.max_len
# Load Model
self.load_model_vocab(args)
# build word splitter
self.build_word_splitter(args)
self.eos = DEFAULT_EOS
def initialize_states(self, states):
states.incremental_states = dict()
states.incremental_states["online"] = dict()
def to_device(self, tensor):
if self.gpu:
return tensor.cuda()
else:
return tensor.cpu()
def load_model_vocab(self, args):
filename = args.model_path
if not os.path.exists(filename):
raise IOError("Model file not found: {}".format(filename))
state = checkpoint_utils.load_checkpoint_to_cpu(filename)
task_args = state["cfg"]["task"]
task_args.data = args.data_bin
task = tasks.setup_task(task_args)
# build model for ensemble
state["cfg"]["model"].load_pretrained_encoder_from = None
state["cfg"]["model"].load_pretrained_decoder_from = None
self.model = task.build_model(state["cfg"]["model"])
self.model.load_state_dict(state["model"], strict=True)
self.model.eval()
self.model.share_memory()
if self.gpu:
self.model.cuda()
# Set dictionary
self.dict = {}
self.dict["tgt"] = task.target_dictionary
self.dict["src"] = task.source_dictionary
@staticmethod
def add_args(parser):
# fmt: off
parser.add_argument('--model-path', type=str, required=True,
help='path to your pretrained model.')
parser.add_argument("--data-bin", type=str, required=True,
help="Path of data binary")
parser.add_argument("--max-len", type=int, default=100,
help="Max length of translation")
parser.add_argument("--tgt-splitter-type", type=str, default="SentencePiece",
help="Subword splitter type for target text.")
parser.add_argument("--tgt-splitter-path", type=str, default=None,
help="Subword splitter model path for target text.")
parser.add_argument("--src-splitter-type", type=str, default="SentencePiece",
help="Subword splitter type for source text.")
parser.add_argument("--src-splitter-path", type=str, default=None,
help="Subword splitter model path for source text.")
# fmt: on
return parser
def build_word_splitter(self, args):
self.spm = {}
for lang in ['src', 'tgt']:
if getattr(args, f'{lang}_splitter_type', None):
path = getattr(args, f'{lang}_splitter_path', None)
if path:
self.spm[lang] = spm.SentencePieceProcessor()
self.spm[lang].Load(path)
def segment_to_units(self, segment, states):
# Split a full word (segment) into subwords (units)
return self.spm['src'].EncodeAsPieces(segment)
def update_model_encoder(self, states):
if len(states.units.source) == 0:
return
src_indices = [
self.dict['src'].index(x)
for x in states.units.source.value
]
if states.finish_read():
# Append the eos index when the prediction is over
src_indices += [self.dict["tgt"].eos_index]
src_indices = self.to_device(
torch.LongTensor(src_indices).unsqueeze(0)
)
src_lengths = self.to_device(
torch.LongTensor([src_indices.size(1)])
)
states.encoder_states = self.model.encoder(src_indices, src_lengths)
torch.cuda.empty_cache()
def update_states_read(self, states):
# Happens after a read action.
self.update_model_encoder(states)
def units_to_segment(self, units, states):
# Merge sub words (units) to full word (segment).
# For Japanese, we can directly send
# the untokenized token to server except the BOS token
# with following option
# --sacrebleu-tokenizer MeCab
# --eval-latency-unit char
# --no-space
token = units.value.pop()
if (
token == self.dict["tgt"].eos_word
or len(states.segments.target) > self.max_len
):
return DEFAULT_EOS
if BOS_PREFIX == token:
return None
if token[0] == BOS_PREFIX:
return token[1:]
else:
return token
def policy(self, states):
if not getattr(states, "encoder_states", None):
# No encoder states, read a token first
return READ_ACTION
# encode previous predicted target tokens
tgt_indices = self.to_device(
torch.LongTensor(
[self.model.decoder.dictionary.eos()]
+ [
self.dict['tgt'].index(x)
for x in states.units.target.value
if x is not None
]
).unsqueeze(0)
)
# Current steps
states.incremental_states["steps"] = {
"src": states.encoder_states["encoder_out"][0].size(0),
"tgt": 1 + len(states.units.target),
}
# Online only means the reading is not finished
states.incremental_states["online"]["only"] = (
torch.BoolTensor([not states.finish_read()])
)
x, outputs = self.model.decoder.forward(
prev_output_tokens=tgt_indices,
encoder_out=states.encoder_states,
incremental_state=states.incremental_states,
)
states.decoder_out = x
torch.cuda.empty_cache()
if outputs.action == 0:
return READ_ACTION
else:
return WRITE_ACTION
def predict(self, states):
# Predict target token from decoder states
decoder_states = states.decoder_out
lprobs = self.model.get_normalized_probs(
[decoder_states[:, -1:]], log_probs=True
)
index = lprobs.argmax(dim=-1)[0, 0].item()
if index != self.dict['tgt'].eos_index:
token = self.dict['tgt'].string([index])
else:
token = self.dict['tgt'].eos_word
return token
|