File size: 33,718 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
from torch import Tensor
import torch.nn as nn

from examples.simultaneous_translation.utils.functions import (
    exclusive_cumprod,
    lengths_to_mask,
)
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.modules import MultiheadAttention

from . import register_monotonic_attention
from typing import Dict, Optional

from examples.simultaneous_translation.utils import p_choose_strategy

@with_incremental_state
class MonotonicAttention(nn.Module):
    """
    Abstract class of monotonic attentions
    """

    def __init__(self, args):
        self.eps = args.attention_eps
        self.mass_preservation = args.mass_preservation

        self.noise_type = args.noise_type
        self.noise_mean = args.noise_mean
        self.noise_var = args.noise_var

        self.energy_bias_init = args.energy_bias_init
        self.energy_bias = (
            nn.Parameter(self.energy_bias_init * torch.ones([1]))
            if args.energy_bias is True
            else 0
        )

    @staticmethod
    def add_args(parser):
        # fmt: off
        parser.add_argument('--no-mass-preservation', action="store_false",
                            dest="mass_preservation",
                            help='Do not stay on the last token when decoding')
        parser.add_argument('--mass-preservation', action="store_true",
                            dest="mass_preservation",
                            help='Stay on the last token when decoding')
        parser.set_defaults(mass_preservation=True)
        parser.add_argument('--noise-var', type=float, default=1.0,
                            help='Variance of discretness noise')
        parser.add_argument('--noise-mean', type=float, default=0.0,
                            help='Mean of discretness noise')
        parser.add_argument('--noise-type', type=str, default="flat",
                            help='Type of discretness noise')
        parser.add_argument('--energy-bias', action="store_true",
                            default=False,
                            help='Bias for energy')
        parser.add_argument('--energy-bias-init', type=float, default=-2.0,
                            help='Initial value of the bias for energy')
        parser.add_argument('--attention-eps', type=float, default=1e-6,
                            help='Epsilon when calculating expected attention')

    def p_choose(self, *args):
        raise NotImplementedError

    def input_projections(self, *args):
        raise NotImplementedError

    def attn_energy(
        self, q_proj, k_proj, key_padding_mask=None, attn_mask=None
    ):
        """
        Calculating monotonic energies

        ============================================================
        Expected input size
        q_proj: bsz * num_heads, tgt_len, self.head_dim
        k_proj: bsz * num_heads, src_len, self.head_dim
        key_padding_mask: bsz, src_len
        attn_mask: tgt_len, src_len
        """
        bsz, tgt_len, embed_dim = q_proj.size()
        bsz = bsz // self.num_heads
        src_len = k_proj.size(1)

        attn_energy = (
            torch.bmm(q_proj, k_proj.transpose(1, 2)) + self.energy_bias
        )

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            attn_energy += attn_mask

        attn_energy = attn_energy.view(bsz, self.num_heads, tgt_len, src_len)

        if key_padding_mask is not None:
            attn_energy = attn_energy.masked_fill(
                key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
                float("-inf"),
            )

        return attn_energy

    def expected_alignment_train(self, p_choose, key_padding_mask: Optional[Tensor]):
        """
        Calculating expected alignment for MMA
        Mask is not need because p_choose will be 0 if masked

        q_ij = (1 − p_{ij−1})q_{ij−1} + a+{i−1j}
        a_ij = p_ij q_ij

        Parallel solution:
        ai = p_i * cumprod(1 − pi) * cumsum(a_i / cumprod(1 − pi))

        ============================================================
        Expected input size
        p_choose: bsz * num_heads, tgt_len, src_len
        """

        # p_choose: bsz * num_heads, tgt_len, src_len
        bsz_num_heads, tgt_len, src_len = p_choose.size()

        # cumprod_1mp : bsz * num_heads, tgt_len, src_len
        cumprod_1mp = exclusive_cumprod(1 - p_choose, dim=2, eps=self.eps)
        cumprod_1mp_clamp = torch.clamp(cumprod_1mp, self.eps, 1.0)

        init_attention = p_choose.new_zeros([bsz_num_heads, 1, src_len])
        init_attention[:, :, 0] = 1.0

        previous_attn = [init_attention]

        for i in range(tgt_len):
            # p_choose: bsz * num_heads, tgt_len, src_len
            # cumprod_1mp_clamp : bsz * num_heads, tgt_len, src_len
            # previous_attn[i]: bsz * num_heads, 1, src_len
            # alpha_i: bsz * num_heads, src_len
            alpha_i = (
                p_choose[:, i]
                * cumprod_1mp[:, i]
                * torch.cumsum(previous_attn[i][:, 0] / cumprod_1mp_clamp[:, i], dim=1)
            ).clamp(0, 1.0)
            previous_attn.append(alpha_i.unsqueeze(1))

        # alpha: bsz * num_heads, tgt_len, src_len
        alpha = torch.cat(previous_attn[1:], dim=1)

        if self.mass_preservation:
            # Last token has the residual probabilities
            if key_padding_mask is not None and key_padding_mask[:, -1].any():
                # right padding
                batch_size = key_padding_mask.size(0)
                residuals = 1 - alpha.sum(dim=-1, keepdim=True).clamp(0.0, 1.0)
                src_lens = src_len - key_padding_mask.sum(dim=1, keepdim=True)
                src_lens = src_lens.expand(
                    batch_size, self.num_heads
                ).contiguous().view(-1, 1)
                src_lens = src_lens.expand(-1, tgt_len).contiguous()
                # add back the last value
                residuals += alpha.gather(2, src_lens.unsqueeze(-1) - 1)
                alpha = alpha.scatter(2, src_lens.unsqueeze(-1) - 1, residuals)
            else:
                residuals = 1 - alpha[:, :, :-1].sum(dim=-1).clamp(0.0, 1.0)
                alpha[:, :, -1] = residuals

        if torch.isnan(alpha).any():
            # Something is wrong
            raise RuntimeError("NaN in alpha.")

        return alpha

    def expected_alignment_infer(
        self, p_choose, encoder_padding_mask: Optional[Tensor], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
    ):
        # TODO modify this function
        """
        Calculating mo alignment for MMA during inference time

        ============================================================
        Expected input size
        p_choose: bsz * num_heads, tgt_len, src_len
        incremental_state: dict
        encodencoder_padding_mask: bsz * src_len
        """
        # p_choose: bsz * self.num_heads, src_len
        bsz_num_heads, tgt_len, src_len = p_choose.size()
        # One token at a time
        assert tgt_len == 1
        p_choose = p_choose[:, 0, :]

        monotonic_cache = self._get_monotonic_buffer(incremental_state)

        # prev_monotonic_step: bsz, num_heads
        bsz = bsz_num_heads // self.num_heads
        prev_monotonic_step = monotonic_cache.get(
            "head_step",
            p_choose.new_zeros([bsz, self.num_heads]).long()
        )
        assert prev_monotonic_step is not None
        bsz, num_heads = prev_monotonic_step.size()
        assert num_heads == self.num_heads
        assert bsz * num_heads == bsz_num_heads

        # p_choose: bsz, num_heads, src_len
        p_choose = p_choose.view(bsz, num_heads, src_len)

        if encoder_padding_mask is not None:
            src_lengths = src_len - \
                encoder_padding_mask.sum(dim=1, keepdim=True).long()
        else:
            src_lengths = prev_monotonic_step.new_ones(bsz, 1) * src_len

        # src_lengths: bsz, num_heads
        src_lengths = src_lengths.expand_as(prev_monotonic_step)
        # new_monotonic_step: bsz, num_heads
        new_monotonic_step = prev_monotonic_step

        step_offset = 0
        if encoder_padding_mask is not None:
            if encoder_padding_mask[:, 0].any():
                # left_pad_source = True:
                step_offset = encoder_padding_mask.sum(dim=-1, keepdim=True)

        max_steps = src_lengths - 1 if self.mass_preservation else src_lengths

        # finish_read: bsz, num_heads
        finish_read = new_monotonic_step.eq(max_steps)
        p_choose_i = 1
        while finish_read.sum().item() < bsz * self.num_heads:
            # p_choose: bsz * self.num_heads, src_len
            # only choose the p at monotonic steps
            # p_choose_i: bsz , self.num_heads
            p_choose_i = (
                p_choose.gather(
                    2,
                    (step_offset + new_monotonic_step)
                    .unsqueeze(2)
                    .clamp(0, src_len - 1),
                )
            ).squeeze(2)

            action = (
                (p_choose_i < 0.5)
                .type_as(prev_monotonic_step)
                .masked_fill(finish_read, 0)
            )
            # 1 x bsz
            # sample actions on unfinished seq
            # 1 means stay, finish reading
            # 0 means leave, continue reading
            # dist = torch.distributions.bernoulli.Bernoulli(p_choose)
            # action = dist.sample().type_as(finish_read) * (1 - finish_read)

            new_monotonic_step += action

            finish_read = new_monotonic_step.eq(max_steps) | (action == 0)

        monotonic_cache["head_step"] = new_monotonic_step
        # Whether a head is looking for new input
        monotonic_cache["head_read"] = (
            new_monotonic_step.eq(max_steps) & (p_choose_i < 0.5)
        )

        # alpha: bsz * num_heads, 1, src_len
        # new_monotonic_step: bsz, num_heads
        alpha = (
            p_choose
            .new_zeros([bsz * self.num_heads, src_len])
            .scatter(
                1,
                (step_offset + new_monotonic_step)
                .view(bsz * self.num_heads, 1).clamp(0, src_len - 1),
                1
            )
        )

        if not self.mass_preservation:
            alpha = alpha.masked_fill(
                (new_monotonic_step == max_steps)
                .view(bsz * self.num_heads, 1),
                0
            )

        alpha = alpha.unsqueeze(1)

        self._set_monotonic_buffer(incremental_state, monotonic_cache)

        return alpha

    def _get_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]):
        return self.get_incremental_state(
            incremental_state,
            'monotonic',
        ) or {}

    def _set_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], buffer: Dict[str, Optional[Tensor]]):
        self.set_incremental_state(
            incremental_state,
            'monotonic',
            buffer,
        )

    def v_proj_output(self, value):
        raise NotImplementedError

    def forward(
        self, query, key, value,
        key_padding_mask=None, attn_mask=None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        need_weights=True, static_kv=False
    ):

        tgt_len, bsz, embed_dim = query.size()
        src_len = value.size(0)

        # stepwise prob
        # p_choose: bsz * self.num_heads, tgt_len, src_len
        p_choose = self.p_choose(
            query, key, key_padding_mask, incremental_state,
        )

        # expected alignment alpha
        # bsz * self.num_heads, tgt_len, src_len
        if incremental_state is not None:
            alpha = self.expected_alignment_infer(
                p_choose, key_padding_mask, incremental_state)
        else:
            alpha = self.expected_alignment_train(
                p_choose, key_padding_mask)

        # expected attention beta
        # bsz * self.num_heads, tgt_len, src_len
        beta = self.expected_attention(
            alpha, query, key, value,
            key_padding_mask, attn_mask,
            incremental_state
        )

        attn_weights = beta

        v_proj = self.v_proj_output(value)

        attn = torch.bmm(attn_weights.type_as(v_proj), v_proj)

        attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)

        attn = self.out_proj(attn)

        beta = beta.view(bsz, self.num_heads, tgt_len, src_len)
        alpha = alpha.view(bsz, self.num_heads, tgt_len, src_len)
        p_choose = p_choose.view(bsz, self.num_heads, tgt_len, src_len)

        return attn, {
            "alpha": alpha,
            "beta": beta,
            "p_choose": p_choose,
        }


@register_monotonic_attention("hard_aligned")
class MonotonicMultiheadAttentionHardAligned(
    MonotonicAttention, MultiheadAttention
):
    def __init__(self, args):
        MultiheadAttention.__init__(
            self,
            embed_dim=args.decoder_embed_dim,
            num_heads=args.decoder_attention_heads,
            kdim=getattr(args, "encoder_embed_dim", None),
            vdim=getattr(args, "encoder_embed_dim", None),
            dropout=args.attention_dropout,
            encoder_decoder_attention=True,
        )

        MonotonicAttention.__init__(self, args)

        self.k_in_proj = {"monotonic": self.k_proj}
        self.q_in_proj = {"monotonic": self.q_proj}
        self.v_in_proj = {"output": self.v_proj}

    @staticmethod
    def add_args(parser):
        # fmt: off
        parser.add_argument('--no-mass-preservation', action="store_false",
                            dest="mass_preservation",
                            help='Do not stay on the last token when decoding')
        parser.add_argument('--mass-preservation', action="store_true",
                            dest="mass_preservation",
                            help='Stay on the last token when decoding')
        parser.set_defaults(mass_preservation=True)
        parser.add_argument('--noise-var', type=float, default=1.0,
                            help='Variance of discretness noise')
        parser.add_argument('--noise-mean', type=float, default=0.0,
                            help='Mean of discretness noise')
        parser.add_argument('--noise-type', type=str, default="flat",
                            help='Type of discretness noise')
        parser.add_argument('--energy-bias', action="store_true",
                            default=False,
                            help='Bias for energy')
        parser.add_argument('--energy-bias-init', type=float, default=-2.0,
                            help='Initial value of the bias for energy')
        parser.add_argument('--attention-eps', type=float, default=1e-6,
                            help='Epsilon when calculating expected attention')

    def attn_energy(
        self, q_proj: Optional[Tensor], k_proj: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None
    ):
        """
        Calculating monotonic energies

        ============================================================
        Expected input size
        q_proj: bsz * num_heads, tgt_len, self.head_dim
        k_proj: bsz * num_heads, src_len, self.head_dim
        key_padding_mask: bsz, src_len
        attn_mask: tgt_len, src_len
        """
        assert q_proj is not None  # Optional[Tensor] annotations in the signature above are to make the JIT compiler happy
        assert k_proj is not None
        bsz, tgt_len, embed_dim = q_proj.size()
        bsz = bsz // self.num_heads
        src_len = k_proj.size(1)

        attn_energy = (
            torch.bmm(q_proj, k_proj.transpose(1, 2)) + self.energy_bias
        )

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            attn_energy += attn_mask

        attn_energy = attn_energy.view(bsz, self.num_heads, tgt_len, src_len)

        if key_padding_mask is not None:
            attn_energy = attn_energy.masked_fill(
                key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
                float("-inf"),
            )

        return attn_energy

    def expected_alignment_train(self, p_choose, key_padding_mask: Optional[Tensor]):
        """
        Calculating expected alignment for MMA
        Mask is not need because p_choose will be 0 if masked

        q_ij = (1 − p_{ij−1})q_{ij−1} + a+{i−1j}
        a_ij = p_ij q_ij

        Parallel solution:
        ai = p_i * cumprod(1 − pi) * cumsum(a_i / cumprod(1 − pi))

        ============================================================
        Expected input size
        p_choose: bsz * num_heads, tgt_len, src_len
        """

        # p_choose: bsz * num_heads, tgt_len, src_len
        bsz_num_heads, tgt_len, src_len = p_choose.size()

        # cumprod_1mp : bsz * num_heads, tgt_len, src_len
        cumprod_1mp = exclusive_cumprod(1 - p_choose, dim=2, eps=self.eps)
        cumprod_1mp_clamp = torch.clamp(cumprod_1mp, self.eps, 1.0)

        init_attention = p_choose.new_zeros([bsz_num_heads, 1, src_len])
        init_attention[:, :, 0] = 1.0

        previous_attn = [init_attention]

        for i in range(tgt_len):
            # p_choose: bsz * num_heads, tgt_len, src_len
            # cumprod_1mp_clamp : bsz * num_heads, tgt_len, src_len
            # previous_attn[i]: bsz * num_heads, 1, src_len
            # alpha_i: bsz * num_heads, src_len
            alpha_i = (
                p_choose[:, i]
                * cumprod_1mp[:, i]
                * torch.cumsum(previous_attn[i][:, 0] / cumprod_1mp_clamp[:, i], dim=1)
            ).clamp(0, 1.0)
            previous_attn.append(alpha_i.unsqueeze(1))

        # alpha: bsz * num_heads, tgt_len, src_len
        alpha = torch.cat(previous_attn[1:], dim=1)

        if self.mass_preservation:
            # Last token has the residual probabilities
            if key_padding_mask is not None and key_padding_mask[:, -1].any():
                # right padding
                batch_size = key_padding_mask.size(0)
                residuals = 1 - alpha.sum(dim=-1, keepdim=True).clamp(0.0, 1.0)
                src_lens = src_len - key_padding_mask.sum(dim=1, keepdim=True)
                src_lens = src_lens.expand(
                    batch_size, self.num_heads
                ).contiguous().view(-1, 1)
                src_lens = src_lens.expand(-1, tgt_len).contiguous()
                # add back the last value
                residuals += alpha.gather(2, src_lens.unsqueeze(-1) - 1)
                alpha = alpha.scatter(2, src_lens.unsqueeze(-1) - 1, residuals)
            else:
                residuals = 1 - alpha[:, :, :-1].sum(dim=-1).clamp(0.0, 1.0)
                alpha[:, :, -1] = residuals

        if torch.isnan(alpha).any():
            # Something is wrong
            raise RuntimeError("NaN in alpha.")

        return alpha

    def expected_alignment_infer(
        self, p_choose, encoder_padding_mask: Optional[Tensor], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
    ):
        # TODO modify this function
        """
        Calculating mo alignment for MMA during inference time

        ============================================================
        Expected input size
        p_choose: bsz * num_heads, tgt_len, src_len
        incremental_state: dict
        encodencoder_padding_mask: bsz * src_len
        """
        # p_choose: bsz * self.num_heads, src_len
        bsz_num_heads, tgt_len, src_len = p_choose.size()
        # One token at a time
        assert tgt_len == 1
        p_choose = p_choose[:, 0, :]

        monotonic_cache = self._get_monotonic_buffer(incremental_state)

        # prev_monotonic_step: bsz, num_heads
        bsz = bsz_num_heads // self.num_heads
        prev_monotonic_step = monotonic_cache.get(
            "head_step",
            p_choose.new_zeros([bsz, self.num_heads]).long()
        )
        assert prev_monotonic_step is not None
        bsz, num_heads = prev_monotonic_step.size()
        assert num_heads == self.num_heads
        assert bsz * num_heads == bsz_num_heads

        # p_choose: bsz, num_heads, src_len
        p_choose = p_choose.view(bsz, num_heads, src_len)

        if encoder_padding_mask is not None:
            src_lengths = src_len - \
                encoder_padding_mask.sum(dim=1, keepdim=True).long()
        else:
            src_lengths = torch.ones(bsz, 1).to(prev_monotonic_step) * src_len

        # src_lengths: bsz, num_heads
        src_lengths = src_lengths.expand_as(prev_monotonic_step)
        # new_monotonic_step: bsz, num_heads
        new_monotonic_step = prev_monotonic_step

        step_offset = torch.tensor(0)
        if encoder_padding_mask is not None:
            if encoder_padding_mask[:, 0].any():
                # left_pad_source = True:
                step_offset = encoder_padding_mask.sum(dim=-1, keepdim=True)

        max_steps = src_lengths - 1 if self.mass_preservation else src_lengths

        # finish_read: bsz, num_heads
        finish_read = new_monotonic_step.eq(max_steps)
        p_choose_i = torch.tensor(1)
        while finish_read.sum().item() < bsz * self.num_heads:
            # p_choose: bsz * self.num_heads, src_len
            # only choose the p at monotonic steps
            # p_choose_i: bsz , self.num_heads
            p_choose_i = (
                p_choose.gather(
                    2,
                    (step_offset + new_monotonic_step)
                    .unsqueeze(2)
                    .clamp(0, src_len - 1),
                )
            ).squeeze(2)

            action = (
                (p_choose_i < 0.5)
                .type_as(prev_monotonic_step)
                .masked_fill(finish_read, 0)
            )
            # 1 x bsz
            # sample actions on unfinished seq
            # 1 means stay, finish reading
            # 0 means leave, continue reading
            # dist = torch.distributions.bernoulli.Bernoulli(p_choose)
            # action = dist.sample().type_as(finish_read) * (1 - finish_read)

            new_monotonic_step += action

            finish_read = new_monotonic_step.eq(max_steps) | (action == 0)

        monotonic_cache["head_step"] = new_monotonic_step
        # Whether a head is looking for new input
        monotonic_cache["head_read"] = (
            new_monotonic_step.eq(max_steps) & (p_choose_i < 0.5)
        )

        # alpha: bsz * num_heads, 1, src_len
        # new_monotonic_step: bsz, num_heads
        alpha = (
            p_choose
            .new_zeros([bsz * self.num_heads, src_len])
            .scatter(
                1,
                (step_offset + new_monotonic_step)
                .view(bsz * self.num_heads, 1).clamp(0, src_len - 1),
                1
            )
        )

        if not self.mass_preservation:
            alpha = alpha.masked_fill(
                (new_monotonic_step == max_steps)
                .view(bsz * self.num_heads, 1),
                0
            )

        alpha = alpha.unsqueeze(1)

        self._set_monotonic_buffer(incremental_state, monotonic_cache)

        return alpha

    def _get_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]):
        maybe_incremental_state = self.get_incremental_state(
            incremental_state,
            'monotonic',
        )
        if maybe_incremental_state is None:
            typed_empty_dict: Dict[str, Optional[Tensor]] = {}
            return typed_empty_dict
        else:
            return maybe_incremental_state

    def _set_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], buffer: Dict[str, Optional[Tensor]]):
        self.set_incremental_state(
            incremental_state,
            'monotonic',
            buffer,
        )

    def forward(
        self, query: Optional[Tensor], key: Optional[Tensor], value: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        need_weights: bool = True, static_kv: bool = False, need_head_weights: bool = False,
    ):
        assert query is not None
        assert value is not None
        tgt_len, bsz, embed_dim = query.size()
        src_len = value.size(0)

        # stepwise prob
        # p_choose: bsz * self.num_heads, tgt_len, src_len
        p_choose = self.p_choose(
            query, key, key_padding_mask, incremental_state,
        )

        # expected alignment alpha
        # bsz * self.num_heads, tgt_len, src_len
        if incremental_state is not None:
            alpha = self.expected_alignment_infer(
                p_choose, key_padding_mask, incremental_state)
        else:
            alpha = self.expected_alignment_train(
                p_choose, key_padding_mask)

        # expected attention beta
        # bsz * self.num_heads, tgt_len, src_len
        beta = self.expected_attention(
            alpha, query, key, value,
            key_padding_mask, attn_mask,
            incremental_state
        )

        attn_weights = beta

        v_proj = self.v_proj_output(value)
        assert v_proj is not None

        attn = torch.bmm(attn_weights.type_as(v_proj), v_proj)

        attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)

        attn = self.out_proj(attn)

        beta = beta.view(bsz, self.num_heads, tgt_len, src_len)
        alpha = alpha.view(bsz, self.num_heads, tgt_len, src_len)
        p_choose = p_choose.view(bsz, self.num_heads, tgt_len, src_len)

        return attn, {
            "alpha": alpha,
            "beta": beta,
            "p_choose": p_choose,
        }

    def input_projections(self, query: Optional[Tensor], key: Optional[Tensor], value: Optional[Tensor], name: str):
        """
        Prepare inputs for multihead attention

        ============================================================
        Expected input size
        query: tgt_len, bsz, embed_dim
        key: src_len, bsz, embed_dim
        value: src_len, bsz, embed_dim
        name: monotonic or soft
        """

        if query is not None:
            bsz = query.size(1)
            q = self.q_proj(query)
            q *= self.scaling
            q = q.contiguous().view(
                -1, bsz * self.num_heads, self.head_dim
            ).transpose(0, 1)
        else:
            q = None

        if key is not None:
            bsz = key.size(1)
            k = self.k_proj(key)
            k = k.contiguous().view(
                -1, bsz * self.num_heads, self.head_dim
            ).transpose(0, 1)
        else:
            k = None

        if value is not None:
            bsz = value.size(1)
            v = self.v_proj(value)
            v = v.contiguous().view(
                -1, bsz * self.num_heads, self.head_dim
            ).transpose(0, 1)
        else:
            v = None

        return q, k, v

    def p_choose(
        self, query: Optional[Tensor], key: Optional[Tensor], key_padding_mask: Optional[Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None
    ):
        """
        Calculating step wise prob for reading and writing
        1 to read, 0 to write

        ============================================================
        Expected input size
        query: bsz, tgt_len, embed_dim
        key: bsz, src_len, embed_dim
        value: bsz, src_len, embed_dim
        key_padding_mask: bsz, src_len
        attn_mask: bsz, src_len
        query: bsz, tgt_len, embed_dim
        """

        # prepare inputs
        q_proj, k_proj, _ = self.input_projections(
            query, key, None, "monotonic"
        )

        # attention energy
        attn_energy = self.attn_energy(q_proj, k_proj, key_padding_mask)

        return p_choose_strategy.hard_aligned(q_proj, k_proj, attn_energy, self.noise_mean, self.noise_var, self.training)

    def expected_attention(self, alpha, *args):
        """
        For MMA-H, beta = alpha
        """
        return alpha

    def v_proj_output(self, value):
        _, _, v_proj = self.input_projections(None, None, value, "output")
        return v_proj


@register_monotonic_attention("infinite_lookback")
class MonotonicMultiheadAttentionInfiniteLookback(
    MonotonicMultiheadAttentionHardAligned
):
    def __init__(self, args):
        super().__init__(args)
        self.init_soft_attention()

    def init_soft_attention(self):
        self.k_proj_soft = nn.Linear(self.kdim, self.embed_dim, bias=True)
        self.q_proj_soft = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
        self.k_in_proj["soft"] = self.k_proj_soft
        self.q_in_proj["soft"] = self.q_proj_soft

        if self.qkv_same_dim:
            # Empirically observed the convergence to be much better with
            # the scaled initialization
            nn.init.xavier_uniform_(
                self.k_in_proj["soft"].weight, gain=1 / math.sqrt(2)
            )
            nn.init.xavier_uniform_(
                self.q_in_proj["soft"].weight, gain=1 / math.sqrt(2)
            )
        else:
            nn.init.xavier_uniform_(self.k_in_proj["soft"].weight)
            nn.init.xavier_uniform_(self.q_in_proj["soft"].weight)

    def expected_attention(
        self, alpha, query: Optional[Tensor], key: Optional[Tensor], value: Optional[Tensor],
        key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
    ):
        # monotonic attention, we will calculate milk here
        bsz_x_num_heads, tgt_len, src_len = alpha.size()
        bsz = int(bsz_x_num_heads / self.num_heads)

        q, k, _ = self.input_projections(query, key, None, "soft")
        soft_energy = self.attn_energy(q, k, key_padding_mask, attn_mask)

        assert list(soft_energy.size()) == \
            [bsz, self.num_heads, tgt_len, src_len]

        soft_energy = soft_energy.view(bsz * self.num_heads, tgt_len, src_len)

        if incremental_state is not None:
            monotonic_cache = self._get_monotonic_buffer(incremental_state)
            head_step = monotonic_cache["head_step"]
            assert head_step is not None
            monotonic_length = head_step + 1
            step_offset = 0
            if key_padding_mask is not None:
                if key_padding_mask[:, 0].any():
                    # left_pad_source = True:
                    step_offset = key_padding_mask.sum(dim=-1, keepdim=True)
            monotonic_length += step_offset
            mask = lengths_to_mask(
                monotonic_length.view(-1),
                soft_energy.size(2), 1
            ).unsqueeze(1)

            soft_energy = soft_energy.masked_fill(~mask.to(torch.bool), float("-inf"))
            soft_energy = soft_energy - soft_energy.max(dim=2, keepdim=True)[0]
            exp_soft_energy = torch.exp(soft_energy)
            exp_soft_energy_sum = exp_soft_energy.sum(dim=2)
            beta = exp_soft_energy / exp_soft_energy_sum.unsqueeze(2)

        else:
            soft_energy = soft_energy - soft_energy.max(dim=2, keepdim=True)[0]
            exp_soft_energy = torch.exp(soft_energy) + self.eps
            inner_items = alpha / (torch.cumsum(exp_soft_energy, dim=2))

            beta = (
                exp_soft_energy
                * torch.cumsum(inner_items.flip(dims=[2]), dim=2)
                .flip(dims=[2])
            )

            beta = beta.view(bsz, self.num_heads, tgt_len, src_len)

            if key_padding_mask is not None:
                beta = beta.masked_fill(
                    key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), 0)

            beta = beta / beta.sum(dim=3, keepdim=True)
            beta = beta.view(bsz * self.num_heads, tgt_len, src_len)
            beta = self.dropout_module(beta)

        if torch.isnan(beta).any():
            # Something is wrong
            raise RuntimeError("NaN in beta.")

        return beta


@register_monotonic_attention("waitk")
class MonotonicMultiheadAttentionWaitK(
    MonotonicMultiheadAttentionInfiniteLookback
):
    def __init__(self, args):
        super().__init__(args)
        self.q_in_proj["soft"] = self.q_in_proj["monotonic"]
        self.k_in_proj["soft"] = self.k_in_proj["monotonic"]
        self.waitk_lagging = args.waitk_lagging
        assert self.waitk_lagging > 0, (
            f"Lagging has to been larger than 0, get {self.waitk_lagging}."
        )

    @staticmethod
    def add_args(parser):
        super(
            MonotonicMultiheadAttentionWaitK,
            MonotonicMultiheadAttentionWaitK,
        ).add_args(parser)

        parser.add_argument(
            "--waitk-lagging", type=int, required=True, help="Wait K lagging"
        )

    def p_choose(
        self, query: Optional[Tensor], key: Optional[Tensor], key_padding_mask: Optional[Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
    ):
        """
        query: bsz, tgt_len
        key: bsz, src_len
        key_padding_mask: bsz, src_len
        """
        return p_choose_strategy.waitk(query, key, self.waitk_lagging, self.num_heads, key_padding_mask, incremental_state)