File size: 7,467 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
import re
from dataclasses import dataclass, field
from typing import List, Optional

import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass


@dataclass
class HubertCriterionConfig(FairseqDataclass):
    pred_masked_weight: float = field(
        default=1.0,
        metadata={"help": "weight for predictive loss for masked frames"},
    )
    pred_nomask_weight: float = field(
        default=0.0,
        metadata={"help": "weight for predictive loss for unmasked frames"},
    )
    loss_weights: Optional[List[float]] = field(
        default=None,
        metadata={"help": "weights for additional loss terms (not first one)"},
    )
    log_keys: List[str] = field(
        default_factory=lambda: [],
        metadata={"help": "output keys to log"},
    )


@register_criterion("hubert", dataclass=HubertCriterionConfig)
class HubertCriterion(FairseqCriterion):
    def __init__(self, task, pred_masked_weight, pred_nomask_weight, loss_weights=None, log_keys=None):
        super().__init__(task)
        self.pred_masked_weight = pred_masked_weight
        self.pred_nomask_weight = pred_nomask_weight
        self.loss_weights = loss_weights
        self.log_keys = [] if log_keys is None else log_keys

    def forward(self, model, sample, reduce=True, log_pred=False):
        """Compute the loss for the given sample.
        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(target_list=sample["target_list"], **sample["net_input"])
        loss = 0.
        sample_size = 0
        logging_output = {}
        reduction = "sum" if reduce else "none"

        loss_m_list = []
        logp_m_list = model.get_logits(net_output, True)
        targ_m_list = model.get_targets(net_output, True)
        assert self.pred_masked_weight == 0 or len(logp_m_list) > 0
        for i, (logp_m, targ_m) in enumerate(zip(logp_m_list, targ_m_list)):
            loss_m = F.cross_entropy(logp_m, targ_m, reduction=reduction)
            loss_m_list.append(loss_m)
            logging_output[f"loss_m_{i}"] = loss_m.detach().item()
        if self.pred_masked_weight > 0:
            loss += self.pred_masked_weight * sum(loss_m_list)
            sample_size += targ_m_list[0].numel()

        loss_u_list = []
        logp_u_list = model.get_logits(net_output, False)
        targ_u_list = model.get_targets(net_output, False)
        assert self.pred_nomask_weight == 0 or len(logp_u_list) > 0
        for i, (logp_u, targ_u) in enumerate(zip(logp_u_list, targ_u_list)):
            loss_u = F.cross_entropy(logp_u, targ_u, reduction=reduction)
            loss_u_list.append(loss_u)
            logging_output[f"loss_u_{i}"] = loss_u.detach().item()
        if self.pred_nomask_weight > 0:
            loss += self.pred_nomask_weight * sum(loss_u_list)
            sample_size += targ_u_list[0].numel()

        if self.loss_weights is not None:
            assert hasattr(model, "get_extra_losses")
            extra_losses, names = model.get_extra_losses(net_output)
            if torch.is_tensor(extra_losses):
                extra_losses = [extra_losses]
                names = [names]
            if len(self.loss_weights) == 1 and len(extra_losses) != 1:
                self.loss_weights = [self.loss_weights[0]] * len(extra_losses)
            assert len(extra_losses) == len(self.loss_weights), f"{len(extra_losses)}, {len(self.loss_weights)}"
            for p, n, coef in zip(extra_losses, names, self.loss_weights):
                if coef != 0 and p is not None:
                    p = coef * p.float() * sample_size
                    loss += p
                    logging_output[f"loss_{n}"] = p.item()

        logging_output = {
            "loss": loss.item() if reduce else loss,
            "ntokens": sample_size,
            "nsentences": sample["id"].numel(),
            "sample_size": sample_size,
            **logging_output,
        }

        for lk in self.log_keys:
            if lk in net_output:
                logging_output[lk] = float((net_output[lk]))

        def compute_correct(logits):
            if logits.numel() == 0:
                return 0, 0
            else:
                assert logits.dim() > 1, logits.shape
                max = logits.argmax(-1) == 0
                min = logits.argmin(-1) == 0
                both = max & min
                corr = max.long().sum().item() - both.long().sum().item()
                count = max.numel()
                return corr, count

        with torch.no_grad():
            for i, logp_m in enumerate(logp_m_list):
                corr_m, count_m = compute_correct(logp_m)
                logging_output[f"correct_m_{i}"] = corr_m
                logging_output[f"count_m_{i}"] = count_m

            for i, logp_u in enumerate(logp_u_list):
                corr_u, count_u = compute_correct(logp_u)
                logging_output[f"correct_u_{i}"] = corr_u
                logging_output[f"count_u_{i}"] = count_u

        return loss, sample_size, logging_output

    @staticmethod
    def reduce_metrics(logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training (copied from normal cross entropy)."""
        loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
        ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
        sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)

        metrics.log_scalar("loss", loss_sum / sample_size / math.log(2), sample_size, round=3)
        if sample_size != ntokens:
            metrics.log_scalar("nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3)
            metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg))
        else:
            metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["loss"].avg))

        counts = {}
        for lk in logging_outputs[0].keys():
            if lk.startswith("count_"):
                val = sum(log[lk] for log in logging_outputs)
                metrics.log_scalar(lk, val)
                counts[lk] = val

        for lk in logging_outputs[0].keys():
            if lk.startswith("loss_"):
                val = sum(log[lk] for log in logging_outputs)
                metrics.log_scalar(lk, val / sample_size / math.log(2), round=3)
            elif lk.startswith("correct_"):
                val = sum(log[lk] for log in logging_outputs)
                metrics.log_scalar(lk, val / counts[re.sub("correct", "count", lk)])

    @staticmethod
    def aggregate_logging_outputs(logging_outputs):
        """Aggregate logging outputs from data parallel training."""
        raise NotImplementedError()

    @staticmethod
    def logging_outputs_can_be_summed() -> bool:
        """
        Whether the logging outputs returned by `forward` can be summed
        across workers prior to calling `reduce_metrics`. Setting this
        to True will improves distributed training speed.
        """
        return False