File size: 8,978 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from dataclasses import dataclass, field
from typing import List, Optional

import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.logging.meters import safe_round
from fairseq.utils import is_xla_tensor


@dataclass
class Wav2VecCriterionConfig(FairseqDataclass):
    infonce: bool = field(
        default=False,
        metadata={
            "help": "if set, uses cross entropy instead of binary cross entropy (i.e. InfoNCE loss)"
        },
    )
    loss_weights: Optional[List[float]] = field(
        default=None,
        metadata={"help": "weights for additional loss terms (not first one)"},
    )
    log_keys: List[str] = field(
        default_factory=lambda: [],
        metadata={"help": "output keys to log"},
    )

@register_criterion("wav2vec", dataclass=Wav2VecCriterionConfig)
class Wav2vecCriterion(FairseqCriterion):
    def __init__(self, task, infonce=False, loss_weights=None, log_keys=None):
        super().__init__(task)
        self.infonce = infonce
        self.loss_weights = loss_weights
        self.log_keys = [] if log_keys is None else log_keys

    def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample["net_input"])
        logits = model.get_logits(net_output).float()
        target = model.get_targets(sample, net_output)
        self.xla = is_xla_tensor(logits)

        # XXX: handle weights on xla.
        weights = None
        if hasattr(model, "get_target_weights") and not self.infonce:
            weights = model.get_target_weights(target, net_output)
            if torch.is_tensor(weights):
                weights = weights.float()

        losses = []

        reduction = "none" if ((not reduce) or self.xla) else "sum"
        if self.infonce:
            loss = F.cross_entropy(logits, target, reduction=reduction)
        else:
            loss = F.binary_cross_entropy_with_logits(
                logits, target.float(), weights, reduction=reduction
            )

        if self.xla:
            # tpu-comment: since dynamic shapes lead to recompilations on xla,
            # we don't shrink tensors using mask_indices.
            # Instead, we use mask indices to adjust loss.
            mi = (
                sample['net_input']['mask_indices']
                .transpose(0, 1)  # logits are transposed in `model.get_logits`
                .reshape(logits.size(0))
            )
            loss = (loss * mi).sum() if reduce else (loss * mi)

        if 'sample_size' in sample:
            sample_size = sample['sample_size']
        elif 'mask_indices' in sample['net_input']:
            sample_size = sample['net_input']['mask_indices'].sum()
        else:
            sample_size = target.numel() if self.infonce else target.long().sum().item()
        losses.append(loss.detach().clone())

        if self.loss_weights is not None:
            assert hasattr(model, "get_extra_losses")
            extra_losses = model.get_extra_losses(net_output)
            if torch.is_tensor(extra_losses):
                extra_losses = [extra_losses]
            if len(self.loss_weights) == 1 and len(extra_losses) != 1:
                self.loss_weights = [self.loss_weights[0]] * len(extra_losses)
            assert len(extra_losses) == len(
                self.loss_weights
            ), f"{len(extra_losses)}, {len(self.loss_weights)}"
            for p, coef in zip(extra_losses, self.loss_weights):
                if coef != 0 and p is not None:
                    p = coef * p.float() * sample_size
                    loss += p
                    losses.append(p)

        logging_output = {
            "loss": loss.item() if (reduce and not self.xla) else loss.detach(),
            "ntokens": sample_size,
            "nsentences": sample["id"].numel(),
            "sample_size": sample_size,
        }

        for lk in self.log_keys:
            # Only store "logits" and "target" for computing MAP and MAUC
            # during validation
            if lk == "logits":
                if not self.training:
                    logging_output["logits"] = logits.cpu().numpy()
            elif lk == "target":
                if not self.training:
                    # If the targets have been mixed with the predictions of
                    # teacher models, find the original targets
                    if hasattr(model, "get_original_targets"):
                        original_target = model.get_original_targets(sample, net_output)
                    else:
                        original_target = target
                    logging_output["target"] = original_target.cpu().numpy()
            elif lk in net_output:
                value = net_output[lk]
                if not is_xla_tensor(value):
                    value = float(value)
                logging_output[lk] = value

        if len(losses) > 1:
            for i, l in enumerate(losses):
                logging_output[f"loss_{i}"] = l.item() if not self.xla else l.detach()

        if self.infonce:
            with torch.no_grad():
                if logits.numel() == 0:
                    corr = 0
                    count = 0
                else:
                    assert logits.dim() > 1, logits.shape
                    max = logits.argmax(-1) == 0
                    min = logits.argmin(-1) == 0
                    if is_xla_tensor(logits):
                        max, min = max * mi, min * mi
                        both = max & min
                        corr = max.long().sum() - both.long().sum()
                        count = mi.sum()
                    else:
                        both = max & min
                        corr = max.long().sum().item() - both.long().sum().item()
                        count = float(max.numel())

                logging_output["correct"] = corr
                logging_output["count"] = count

        return loss, sample_size, logging_output

    @staticmethod
    def reduce_metrics(logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training."""
        loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
        ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
        nsentences = utils.item(
            sum(log.get("nsentences", 0) for log in logging_outputs)
        )
        sample_size = utils.item(
            sum(log.get("sample_size", 0) for log in logging_outputs)
        )

        metrics.log_scalar(
            "loss", loss_sum / (sample_size or 1) / math.log(2), sample_size, round=3
        )
        metrics.log_scalar("ntokens", ntokens)
        metrics.log_scalar("nsentences", nsentences)

        correct = sum(log.get("correct", 0) for log in logging_outputs)
        metrics.log_scalar("_correct", correct)

        total = sum(log.get("count", 0) for log in logging_outputs)
        metrics.log_scalar("_total", total)

        if total > 0:
            metrics.log_derived(
                "accuracy",
                lambda meters: safe_round(
                    meters["_correct"].sum / meters["_total"].sum, 5
                )
                if meters["_total"].sum > 0
                else float("nan"),
            )

        builtin_keys = {
            "loss",
            "ntokens",
            "nsentences",
            "sample_size",
            "correct",
            "count",
        }

        for k in logging_outputs[0]:
            if k not in builtin_keys:
                val = sum(log.get(k, 0) for log in logging_outputs)
                if k.startswith("loss"):
                    metrics.log_scalar(
                        k, val / (sample_size or 1) / math.log(2), sample_size, round=3
                    )
                else:
                    metrics.log_scalar(k, val / len(logging_outputs), round=3)

    # FIXME: revert when gather based xla reduction is implemented
    #@staticmethod
    #def logging_outputs_can_be_summed() -> bool:
    def logging_outputs_can_be_summed(self) -> bool:
        """
        Whether the logging outputs returned by `forward` can be summed
        across workers prior to calling `reduce_metrics`. Setting this
        to True will improves distributed training speed.
        """
        # XXX: Gather based reduction not implemented for xla yet.
        # So we fall to sum based reduction for xla.
        return self.xla