File size: 6,097 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
from pathlib import Path
from typing import BinaryIO, Optional, Tuple, Union, List
import numpy as np
import torch
SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"}
FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS = {".npy", ".wav", ".flac", ".ogg"}
def _convert_to_mono(
waveform: torch.FloatTensor, sample_rate: int
) -> torch.FloatTensor:
if waveform.shape[0] > 1:
try:
import torchaudio.sox_effects as ta_sox
except ImportError:
raise ImportError(
"Please install torchaudio to convert multi-channel audios"
)
effects = [['channels', '1']]
return ta_sox.apply_effects_tensor(waveform, sample_rate, effects)[0]
return waveform
def convert_to_mono(waveform: np.ndarray, sample_rate: int) -> np.ndarray:
if waveform.shape[0] > 1:
_waveform = torch.from_numpy(waveform)
return _convert_to_mono(_waveform, sample_rate).numpy()
return waveform
def get_waveform(
path_or_fp: Union[str, BinaryIO], normalization=True, mono=True,
frames=-1, start=0, always_2d=True
) -> Tuple[np.ndarray, int]:
"""Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio.
Args:
path_or_fp (str or BinaryIO): the path or file-like object
normalization (bool): Normalize values to [-1, 1] (Default: True)
mono (bool): convert multi-channel audio to mono-channel one
frames (int): the number of frames to read. (-1 for reading all)
start (int): Where to start reading. A negative value counts from the end.
always_2d (bool): always return 2D array even for mono-channel audios
Returns:
waveform (numpy.ndarray): 1D or 2D waveform (channels x length)
sample_rate (float): sample rate
"""
if isinstance(path_or_fp, str):
ext = Path(path_or_fp).suffix
if ext not in SF_AUDIO_FILE_EXTENSIONS:
raise ValueError(f"Unsupported audio format: {ext}")
try:
import soundfile as sf
except ImportError:
raise ImportError(
"Please install soundfile to load WAV/FLAC/OGG Vorbis audios"
)
waveform, sample_rate = sf.read(
path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start
)
waveform = waveform.T # T x C -> C x T
if mono and waveform.shape[0] > 1:
waveform = convert_to_mono(waveform, sample_rate)
if not normalization:
waveform *= 2 ** 15 # denormalized to 16-bit signed integers
if not always_2d:
waveform = waveform.squeeze(axis=0)
return waveform, sample_rate
def _get_kaldi_fbank(
waveform: np.ndarray, sample_rate: int, n_bins=80
) -> Optional[np.ndarray]:
"""Get mel-filter bank features via PyKaldi."""
try:
from kaldi.feat.mel import MelBanksOptions
from kaldi.feat.fbank import FbankOptions, Fbank
from kaldi.feat.window import FrameExtractionOptions
from kaldi.matrix import Vector
mel_opts = MelBanksOptions()
mel_opts.num_bins = n_bins
frame_opts = FrameExtractionOptions()
frame_opts.samp_freq = sample_rate
opts = FbankOptions()
opts.mel_opts = mel_opts
opts.frame_opts = frame_opts
fbank = Fbank(opts=opts)
features = fbank.compute(Vector(waveform.squeeze()), 1.0).numpy()
return features
except ImportError:
return None
def _get_torchaudio_fbank(
waveform: np.ndarray, sample_rate, n_bins=80
) -> Optional[np.ndarray]:
"""Get mel-filter bank features via TorchAudio."""
try:
import torchaudio.compliance.kaldi as ta_kaldi
waveform = torch.from_numpy(waveform)
features = ta_kaldi.fbank(
waveform, num_mel_bins=n_bins, sample_frequency=sample_rate
)
return features.numpy()
except ImportError:
return None
def get_fbank(path_or_fp: Union[str, BinaryIO], n_bins=80) -> np.ndarray:
"""Get mel-filter bank features via PyKaldi or TorchAudio. Prefer PyKaldi
(faster CPP implementation) to TorchAudio (Python implementation). Note that
Kaldi/TorchAudio requires 16-bit signed integers as inputs and hence the
waveform should not be normalized."""
waveform, sample_rate = get_waveform(path_or_fp, normalization=False)
features = _get_kaldi_fbank(waveform, sample_rate, n_bins)
if features is None:
features = _get_torchaudio_fbank(waveform, sample_rate, n_bins)
if features is None:
raise ImportError(
"Please install pyKaldi or torchaudio to enable "
"online filterbank feature extraction"
)
return features
def is_npy_data(data: bytes) -> bool:
return data[0] == 147 and data[1] == 78
def is_sf_audio_data(data: bytes) -> bool:
is_wav = (data[0] == 82 and data[1] == 73 and data[2] == 70)
is_flac = (data[0] == 102 and data[1] == 76 and data[2] == 97)
is_ogg = (data[0] == 79 and data[1] == 103 and data[2] == 103)
return is_wav or is_flac or is_ogg
def read_from_stored_zip(zip_path: str, offset: int, file_size: int) -> bytes:
with open(zip_path, "rb") as f:
f.seek(offset)
data = f.read(file_size)
return data
def parse_path(path: str) -> Tuple[str, List[int]]:
"""Parse data path which is either a path to
1. a .npy/.wav/.flac/.ogg file
2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]"
Args:
path (str): the data path to parse
Returns:
file_path (str): the file path
slice_ptr (list of int): empty in case 1;
byte offset and length for the slice in case 2
"""
if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS:
_path, slice_ptr = path, []
else:
_path, *slice_ptr = path.split(":")
if not Path(_path).is_file():
raise FileNotFoundError(f"File not found: {_path}")
assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}"
slice_ptr = [int(i) for i in slice_ptr]
return _path, slice_ptr
|