File size: 4,492 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import math
import numbers
from typing import Optional

import numpy as np
from fairseq.data.audio.feature_transforms import (
    AudioFeatureTransform,
    register_audio_feature_transform,
)


@register_audio_feature_transform("specaugment")
class SpecAugmentTransform(AudioFeatureTransform):
    """SpecAugment (https://arxiv.org/abs/1904.08779)"""

    @classmethod
    def from_config_dict(cls, config=None):
        _config = {} if config is None else config
        return SpecAugmentTransform(
            _config.get("time_warp_W", 0),
            _config.get("freq_mask_N", 0),
            _config.get("freq_mask_F", 0),
            _config.get("time_mask_N", 0),
            _config.get("time_mask_T", 0),
            _config.get("time_mask_p", 0.0),
            _config.get("mask_value", None),
        )

    def __init__(
        self,
        time_warp_w: int = 0,
        freq_mask_n: int = 0,
        freq_mask_f: int = 0,
        time_mask_n: int = 0,
        time_mask_t: int = 0,
        time_mask_p: float = 0.0,
        mask_value: Optional[float] = 0.0,
    ):
        # Sanity checks
        assert mask_value is None or isinstance(
            mask_value, numbers.Number
        ), f"mask_value (type: {type(mask_value)}) must be None or a number"
        if freq_mask_n > 0:
            assert freq_mask_f > 0, (
                f"freq_mask_F ({freq_mask_f}) "
                f"must be larger than 0 when doing freq masking."
            )
        if time_mask_n > 0:
            assert time_mask_t > 0, (
                f"time_mask_T ({time_mask_t}) must be larger than 0 when "
                f"doing time masking."
            )

        self.time_warp_w = time_warp_w
        self.freq_mask_n = freq_mask_n
        self.freq_mask_f = freq_mask_f
        self.time_mask_n = time_mask_n
        self.time_mask_t = time_mask_t
        self.time_mask_p = time_mask_p
        self.mask_value = mask_value

    def __repr__(self):
        return (
            self.__class__.__name__
            + "("
            + ", ".join(
                [
                    f"time_warp_w={self.time_warp_w}",
                    f"freq_mask_n={self.freq_mask_n}",
                    f"freq_mask_f={self.freq_mask_f}",
                    f"time_mask_n={self.time_mask_n}",
                    f"time_mask_t={self.time_mask_t}",
                    f"time_mask_p={self.time_mask_p}",
                ]
            )
            + ")"
        )

    def __call__(self, spectrogram):
        assert len(spectrogram.shape) == 2, "spectrogram must be a 2-D tensor."

        distorted = spectrogram.copy()  # make a copy of input spectrogram.
        num_frames = spectrogram.shape[0]  # or 'tau' in the paper.
        num_freqs = spectrogram.shape[1]  # or 'miu' in the paper.
        mask_value = self.mask_value

        if mask_value is None:  # if no value was specified, use local mean.
            mask_value = spectrogram.mean()

        if num_frames == 0:
            return spectrogram

        if num_freqs < self.freq_mask_f:
            return spectrogram

        if self.time_warp_w > 0:
            if 2 * self.time_warp_w < num_frames:
                import cv2

                w0 = np.random.randint(self.time_warp_w, num_frames - self.time_warp_w)
                w = np.random.randint(-self.time_warp_w + 1, self.time_warp_w)
                upper, lower = distorted[:w0, :], distorted[w0:, :]
                upper = cv2.resize(
                    upper, dsize=(num_freqs, w0 + w), interpolation=cv2.INTER_LINEAR
                )
                lower = cv2.resize(
                    lower,
                    dsize=(num_freqs, num_frames - w0 - w),
                    interpolation=cv2.INTER_LINEAR,
                )
                distorted = np.concatenate((upper, lower), axis=0)

        for _i in range(self.freq_mask_n):
            f = np.random.randint(0, self.freq_mask_f)
            f0 = np.random.randint(0, num_freqs - f)
            if f != 0:
                distorted[:, f0 : f0 + f] = mask_value

        max_time_mask_t = min(
            self.time_mask_t, math.floor(num_frames * self.time_mask_p)
        )
        if max_time_mask_t < 1:
            return distorted

        for _i in range(self.time_mask_n):
            t = np.random.randint(0, max_time_mask_t)
            t0 = np.random.randint(0, num_frames - t)
            if t != 0:
                distorted[t0 : t0 + t, :] = mask_value

        return distorted