File size: 17,749 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import shutil
import struct
from functools import lru_cache

import numpy as np
import torch
from fairseq.dataclass.constants import DATASET_IMPL_CHOICES
from fairseq.data.fasta_dataset import FastaDataset
from fairseq.file_io import PathManager

from . import FairseqDataset

from typing import Union


def best_fitting_int_dtype(
    max_int_to_represent,
) -> Union[np.uint16, np.uint32, np.int64]:

    if max_int_to_represent is None:
        return np.uint32  # Safe guess
    elif max_int_to_represent < 65500:
        return np.uint16
    elif max_int_to_represent < 4294967295:
        return np.uint32
    else:
        return np.int64
        # we avoid np.uint64 because it doesn't save space and its type promotion behaves unexpectedly
        # https://github.com/numpy/numpy/issues/5745


def get_available_dataset_impl():
    return list(map(str, DATASET_IMPL_CHOICES))


def infer_dataset_impl(path):
    if IndexedRawTextDataset.exists(path):
        return "raw"
    elif IndexedDataset.exists(path):
        with open(index_file_path(path), "rb") as f:
            magic = f.read(8)
            if magic == IndexedDataset._HDR_MAGIC:
                return "cached"
            elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
                return "mmap"
            else:
                return None
    elif FastaDataset.exists(path):
        return "fasta"
    else:
        return None


def make_builder(out_file, impl, vocab_size=None):
    if impl == "mmap":
        return MMapIndexedDatasetBuilder(
            out_file, dtype=best_fitting_int_dtype(vocab_size)
        )
    elif impl == "fasta":
        raise NotImplementedError
    else:
        return IndexedDatasetBuilder(out_file)


def make_dataset(path, impl, fix_lua_indexing=False, dictionary=None):
    if impl == "raw" and IndexedRawTextDataset.exists(path):
        assert dictionary is not None
        return IndexedRawTextDataset(path, dictionary)
    elif impl == "lazy" and IndexedDataset.exists(path):
        return IndexedDataset(path, fix_lua_indexing=fix_lua_indexing)
    elif impl == "cached" and IndexedDataset.exists(path):
        return IndexedCachedDataset(path, fix_lua_indexing=fix_lua_indexing)
    elif impl == "mmap" and MMapIndexedDataset.exists(path):
        return MMapIndexedDataset(path)
    elif impl == "fasta" and FastaDataset.exists(path):
        from fairseq.data.fasta_dataset import EncodedFastaDataset

        return EncodedFastaDataset(path, dictionary)
    return None


def dataset_exists(path, impl):
    if impl == "raw":
        return IndexedRawTextDataset.exists(path)
    elif impl == "mmap":
        return MMapIndexedDataset.exists(path)
    else:
        return IndexedDataset.exists(path)


def read_longs(f, n):
    a = np.empty(n, dtype=np.int64)
    f.readinto(a)
    return a


def write_longs(f, a):
    f.write(np.array(a, dtype=np.int64))


_code_to_dtype = {
    1: np.uint8,
    2: np.int8,
    3: np.int16,
    4: np.int32,
    5: np.int64,
    6: np.float,
    7: np.double,
    8: np.uint16,
    9: np.uint32,
    10: np.uint64,
}


def _dtype_header_code(dtype) -> int:
    for k in _code_to_dtype.keys():
        if _code_to_dtype[k] == dtype:
            return k
    raise ValueError(dtype)


def index_file_path(prefix_path):
    return prefix_path + ".idx"


def data_file_path(prefix_path):
    return prefix_path + ".bin"


class IndexedDataset(FairseqDataset):
    """Loader for TorchNet IndexedDataset"""

    _HDR_MAGIC = b"TNTIDX\x00\x00"

    def __init__(self, path, fix_lua_indexing=False):
        super().__init__()
        self.path = path
        self.fix_lua_indexing = fix_lua_indexing
        self.data_file = None
        self.read_index(path)

    def read_index(self, path):
        with open(index_file_path(path), "rb") as f:
            magic = f.read(8)
            assert magic == self._HDR_MAGIC, (
                "Index file doesn't match expected format. "
                "Make sure that --dataset-impl is configured properly."
            )
            version = f.read(8)
            assert struct.unpack("<Q", version) == (1,)
            code, self.element_size = struct.unpack("<QQ", f.read(16))
            self.dtype = _code_to_dtype[code]
            self._len, self.s = struct.unpack("<QQ", f.read(16))
            self.dim_offsets = read_longs(f, self._len + 1)
            self.data_offsets = read_longs(f, self._len + 1)
            self.sizes = read_longs(f, self.s)

    def read_data(self, path):
        self.data_file = open(data_file_path(path), "rb", buffering=0)

    def check_index(self, i):
        if i < 0 or i >= self._len:
            raise IndexError("index out of range")

    def __del__(self):
        if self.data_file:
            self.data_file.close()

    @lru_cache(maxsize=8)
    def __getitem__(self, i) -> torch.Tensor:
        if not self.data_file:
            self.read_data(self.path)
        self.check_index(i)
        tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
        a = np.empty(tensor_size, dtype=self.dtype)
        self.data_file.seek(self.data_offsets[i] * self.element_size)
        self.data_file.readinto(a)
        item = torch.from_numpy(a).long()
        if self.fix_lua_indexing:
            item -= 1  # subtract 1 for 0-based indexing
        return item

    def __len__(self):
        return self._len

    def num_tokens(self, index):
        return self.sizes[index]

    def size(self, index):
        return self.sizes[index]

    @staticmethod
    def exists(path):
        return PathManager.exists(index_file_path(path)) and PathManager.exists(
            data_file_path(path)
        )

    @property
    def supports_prefetch(self):
        return False  # avoid prefetching to save memory


class IndexedCachedDataset(IndexedDataset):
    def __init__(self, path, fix_lua_indexing=False):
        super().__init__(path, fix_lua_indexing=fix_lua_indexing)
        self.cache = None
        self.cache_index = {}

    @property
    def supports_prefetch(self):
        return True

    def prefetch(self, indices):
        if all(i in self.cache_index for i in indices):
            return
        if not self.data_file:
            self.read_data(self.path)
        indices = sorted(set(indices))
        total_size = 0
        for i in indices:
            total_size += self.data_offsets[i + 1] - self.data_offsets[i]
        self.cache = np.empty(total_size, dtype=self.dtype)
        ptx = 0
        self.cache_index.clear()
        for i in indices:
            self.cache_index[i] = ptx
            size = self.data_offsets[i + 1] - self.data_offsets[i]
            a = self.cache[ptx : ptx + size]
            self.data_file.seek(self.data_offsets[i] * self.element_size)
            self.data_file.readinto(a)
            ptx += size
        if self.data_file:
            # close and delete data file after prefetch so we can pickle
            self.data_file.close()
            self.data_file = None

    @lru_cache(maxsize=8)
    def __getitem__(self, i):
        self.check_index(i)
        tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
        a = np.empty(tensor_size, dtype=self.dtype)
        ptx = self.cache_index[i]
        np.copyto(a, self.cache[ptx : ptx + a.size])
        item = torch.from_numpy(a).long()
        if self.fix_lua_indexing:
            item -= 1  # subtract 1 for 0-based indexing
        return item


class IndexedRawTextDataset(FairseqDataset):
    """Takes a text file as input and binarizes it in memory at instantiation.
    Original lines are also kept in memory"""

    def __init__(self, path, dictionary, append_eos=True, reverse_order=False):
        self.tokens_list = []
        self.lines = []
        self.sizes = []
        self.append_eos = append_eos
        self.reverse_order = reverse_order
        self.read_data(path, dictionary)
        self.size = len(self.tokens_list)

    def read_data(self, path, dictionary):
        with open(path, "r", encoding="utf-8") as f:
            for line in f:
                self.lines.append(line.strip("\n"))
                tokens = dictionary.encode_line(
                    line,
                    add_if_not_exist=False,
                    append_eos=self.append_eos,
                    reverse_order=self.reverse_order,
                ).long()
                self.tokens_list.append(tokens)
                self.sizes.append(len(tokens))
        self.sizes = np.array(self.sizes)

    def check_index(self, i):
        if i < 0 or i >= self.size:
            raise IndexError("index out of range")

    @lru_cache(maxsize=8)
    def __getitem__(self, i):
        self.check_index(i)
        return self.tokens_list[i]

    def get_original_text(self, i):
        self.check_index(i)
        return self.lines[i]

    def __del__(self):
        pass

    def __len__(self):
        return self.size

    def num_tokens(self, index):
        return self.sizes[index]

    def size(self, index):
        return self.sizes[index]

    @staticmethod
    def exists(path):
        return PathManager.exists(path)


class IndexedDatasetBuilder:
    element_sizes = {
        np.uint8: 1,
        np.int8: 1,
        np.int16: 2,
        np.int32: 4,
        np.int64: 8,
        np.float: 4,
        np.double: 8,
    }

    def __init__(self, out_file, dtype=np.int32):
        self.out_file = open(out_file, "wb")
        self.dtype = dtype
        self.data_offsets = [0]
        self.dim_offsets = [0]
        self.sizes = []
        self.element_size = self.element_sizes[self.dtype]

    def add_item(self, tensor):
        # +1 for Lua compatibility
        bytes = self.out_file.write(np.array(tensor.numpy() + 1, dtype=self.dtype))
        self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
        for s in tensor.size():
            self.sizes.append(s)
        self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))

    def merge_file_(self, another_file):
        index = IndexedDataset(another_file)
        assert index.dtype == self.dtype

        begin = self.data_offsets[-1]
        for offset in index.data_offsets[1:]:
            self.data_offsets.append(begin + offset)
        self.sizes.extend(index.sizes)
        begin = self.dim_offsets[-1]
        for dim_offset in index.dim_offsets[1:]:
            self.dim_offsets.append(begin + dim_offset)

        with open(data_file_path(another_file), "rb") as f:
            while True:
                data = f.read(1024)
                if data:
                    self.out_file.write(data)
                else:
                    break

    def finalize(self, index_file):
        self.out_file.close()
        index = open(index_file, "wb")
        index.write(b"TNTIDX\x00\x00")
        index.write(struct.pack("<Q", 1))
        index.write(
            struct.pack("<QQ", _dtype_header_code(self.dtype), self.element_size)
        )
        index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes)))
        write_longs(index, self.dim_offsets)
        write_longs(index, self.data_offsets)
        write_longs(index, self.sizes)
        index.close()


def _warmup_mmap_file(path):
    with open(path, "rb") as stream:
        while stream.read(100 * 1024 * 1024):
            pass


class MMapIndexedDataset(torch.utils.data.Dataset):
    class Index:
        _HDR_MAGIC = b"MMIDIDX\x00\x00"

        @classmethod
        def writer(cls, path, dtype):
            class _Writer:
                def __enter__(self):
                    self._file = open(path, "wb")

                    self._file.write(cls._HDR_MAGIC)
                    self._file.write(struct.pack("<Q", 1))
                    self._file.write(struct.pack("<B", _dtype_header_code(dtype)))

                    return self

                @staticmethod
                def _get_pointers(sizes):
                    dtype_size = dtype().itemsize
                    address = 0
                    pointers = []

                    for size in sizes:
                        pointers.append(address)
                        address += size * dtype_size

                    return pointers

                def write(self, sizes):
                    pointers = self._get_pointers(sizes)

                    self._file.write(struct.pack("<Q", len(sizes)))

                    sizes = np.array(sizes, dtype=np.int32)
                    self._file.write(sizes.tobytes(order="C"))
                    del sizes

                    pointers = np.array(pointers, dtype=np.int64)
                    self._file.write(pointers.tobytes(order="C"))
                    del pointers

                def __exit__(self, exc_type, exc_val, exc_tb):
                    self._file.close()

            return _Writer()

        def __init__(self, path):
            with open(path, "rb") as stream:
                magic_test = stream.read(9)
                assert self._HDR_MAGIC == magic_test, (
                    "Index file doesn't match expected format. "
                    "Make sure that --dataset-impl is configured properly."
                )
                version = struct.unpack("<Q", stream.read(8))
                assert (1,) == version

                (dtype_code,) = struct.unpack("<B", stream.read(1))
                self._dtype = _code_to_dtype[dtype_code]
                self._dtype_size = self._dtype().itemsize

                self._len = struct.unpack("<Q", stream.read(8))[0]
                offset = stream.tell()

            _warmup_mmap_file(path)

            self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
            self._bin_buffer = memoryview(self._bin_buffer_mmap)
            self._sizes = np.frombuffer(
                self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
            )
            self._pointers = np.frombuffer(
                self._bin_buffer,
                dtype=np.int64,
                count=self._len,
                offset=offset + self._sizes.nbytes,
            )

        def __del__(self):
            self._bin_buffer_mmap._mmap.close()
            del self._bin_buffer_mmap

        @property
        def dtype(self):
            return self._dtype

        @property
        def sizes(self):
            return self._sizes

        @lru_cache(maxsize=8)
        def __getitem__(self, i):
            return self._pointers[i], self._sizes[i]

        def __len__(self):
            return self._len

    def __init__(self, path):
        super().__init__()

        self._path = None
        self._index = None
        self._bin_buffer = None

        self._do_init(path)

    def __getstate__(self):
        return self._path

    def __setstate__(self, state):
        self._do_init(state)

    def _do_init(self, path):
        self._path = path
        self._index = self.Index(index_file_path(self._path))

        _warmup_mmap_file(data_file_path(self._path))
        self._bin_buffer_mmap = np.memmap(
            data_file_path(self._path), mode="r", order="C"
        )
        self._bin_buffer = memoryview(self._bin_buffer_mmap)

    def __del__(self):
        self._bin_buffer_mmap._mmap.close()
        del self._bin_buffer_mmap
        del self._index

    def __len__(self):
        return len(self._index)

    @lru_cache(maxsize=8)
    def __getitem__(self, i):
        ptr, size = self._index[i]
        np_array = np.frombuffer(
            self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
        )
        if self._index.dtype != np.int64:
            np_array = np_array.astype(np.int64)

        return torch.from_numpy(np_array)

    @property
    def sizes(self):
        return self._index.sizes

    @property
    def supports_prefetch(self):
        return False

    @staticmethod
    def exists(path):
        return PathManager.exists(index_file_path(path)) and PathManager.exists(
            data_file_path(path)
        )


def get_indexed_dataset_to_local(path) -> str:
    local_index_path = PathManager.get_local_path(index_file_path(path))
    local_data_path = PathManager.get_local_path(data_file_path(path))

    assert local_index_path.endswith(".idx") and local_data_path.endswith(".bin"), (
        "PathManager.get_local_path does not return files with expected patterns: "
        f"{local_index_path} and {local_data_path}"
    )

    local_path = local_data_path[:-4]  # stripping surfix ".bin"
    assert local_path == local_index_path[:-4]  # stripping surfix ".idx"
    return local_path


class MMapIndexedDatasetBuilder:
    def __init__(self, out_file, dtype=np.int64):
        self._data_file = open(out_file, "wb")
        self._dtype = dtype
        self._sizes = []

    def add_item(self, tensor):
        np_array = np.array(tensor.numpy(), dtype=self._dtype)
        self._data_file.write(np_array.tobytes(order="C"))
        self._sizes.append(np_array.size)

    def merge_file_(self, another_file):
        # Concatenate index
        index = MMapIndexedDataset.Index(index_file_path(another_file))
        assert index.dtype == self._dtype

        for size in index.sizes:
            self._sizes.append(size)

        # Concatenate data
        with open(data_file_path(another_file), "rb") as f:
            shutil.copyfileobj(f, self._data_file)

    def finalize(self, index_file):
        self._data_file.close()

        with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
            index.write(self._sizes)