File size: 8,003 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
RoBERTa: A Robustly Optimized BERT Pretraining Approach.
"""

import logging

import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.model_parallel.models.transformer import ModelParallelTransformerEncoder
from fairseq.models import register_model, register_model_architecture
from fairseq.models.roberta import (
    roberta_base_architecture,
    roberta_prenorm_architecture,
    RobertaEncoder,
    RobertaModel,
)
from fairseq.modules import LayerNorm


try:
    from fairseq.model_parallel.megatron.mpu import (
        copy_to_model_parallel_region,
        gather_from_model_parallel_region,
        ColumnParallelLinear,
        VocabParallelEmbedding,
    )

    has_megatron_submodule = True
except (ImportError, ModuleNotFoundError):
    has_megatron_submodule = False

logger = logging.getLogger(__name__)


@register_model("model_parallel_roberta")
class ModelParallelRobertaModel(RobertaModel):
    def __init__(self, args, encoder):
        super().__init__(args, encoder)

        self.classification_heads = nn.ModuleDict()

    @staticmethod
    def add_args(parser):
        RobertaModel.add_args(parser)
        parser.add_argument(
            "--no-final-layer-norm",
            action="store_true",
            help=(
                "don't add final layernorm (only applicable when "
                "--encoder-normalize-before=True"
            ),
        )

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present
        base_architecture(args)

        task.source_dictionary.pad_to_multiple_(args.model_parallel_size * 8)
        task.target_dictionary.pad_to_multiple_(args.model_parallel_size * 8)

        if not hasattr(args, "max_positions"):
            args.max_positions = args.tokens_per_sample

        if getattr(args, "untie_weights_roberta", False):
            raise NotImplementedError(
                "--untie-weights-roberta is not supported in model parallel mode"
            )

        encoder = ModelParallelRobertaEncoder(args, task.source_dictionary)
        return cls(args, encoder)

    def forward(
        self,
        src_tokens,
        features_only=False,
        return_all_hiddens=False,
        classification_head_name=None,
        **kwargs
    ):
        if classification_head_name is not None:
            features_only = True

        x, extra = self.encoder(src_tokens, features_only, return_all_hiddens, **kwargs)

        if classification_head_name is not None:
            x = self.classification_heads[classification_head_name](x)
        return x, extra

    def register_classification_head(
        self, name, num_classes=None, inner_dim=None, **kwargs
    ):
        """Register a classification head."""
        if name in self.classification_heads:
            prev_num_classes = self.classification_heads[name].out_proj.out_features
            prev_inner_dim = self.classification_heads[name].dense.out_features
            if num_classes != prev_num_classes or inner_dim != prev_inner_dim:
                logger.warning(
                    're-registering head "{}" with num_classes {} (prev: {}) '
                    "and inner_dim {} (prev: {})".format(
                        name, num_classes, prev_num_classes, inner_dim, prev_inner_dim
                    )
                )
        self.classification_heads[name] = ModelParallelRobertaClassificationHead(
            self.args.encoder_embed_dim,
            inner_dim or self.args.encoder_embed_dim,
            num_classes,
            self.args.pooler_activation_fn,
            self.args.pooler_dropout,
        )


class ModelParallelRobertaLMHead(nn.Module):
    """Head for masked language modeling."""

    def __init__(self, embed_dim, output_dim, activation_fn, weight=None):
        super().__init__()
        self.dense = ColumnParallelLinear(embed_dim, embed_dim, gather_output=True)
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.layer_norm = LayerNorm(embed_dim)

        if weight is None:
            weight = nn.Linear(embed_dim, output_dim, bias=False).weight
        self.weight = weight
        self.bias = nn.Parameter(torch.zeros(output_dim))

    def forward(self, features, masked_tokens=None, **kwargs):
        # Only project the unmasked tokens while training,
        # saves both memory and computation
        if masked_tokens is not None:
            features = features[masked_tokens, :]

        x = self.dense(features)
        x = self.activation_fn(x)
        x = self.layer_norm(x)

        x = copy_to_model_parallel_region(x)
        # project back to size of vocabulary with bias
        x = F.linear(x, self.weight)
        x = gather_from_model_parallel_region(x).contiguous()
        x = x + self.bias
        return x


class ModelParallelRobertaClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(
        self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout
    ):
        super().__init__()
        self.dense = ColumnParallelLinear(input_dim, inner_dim, gather_output=True)
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.dropout = nn.Dropout(p=pooler_dropout)
        self.out_proj = nn.Linear(inner_dim, num_classes)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = self.activation_fn(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


class ModelParallelRobertaEncoder(RobertaEncoder):
    """RoBERTa encoder."""

    def __init__(self, args, dictionary):
        super().__init__(args, dictionary)
        assert not self.args.untie_weights_roberta

    def build_embedding(self, vocab_size, embedding_dim, padding_idx):
        return VocabParallelEmbedding(vocab_size, embedding_dim, padding_idx)

    def build_encoder(self, args, dictionary, embed_tokens):
        return ModelParallelTransformerEncoder(args, dictionary, embed_tokens)

    def build_lm_head(self, embed_dim, output_dim, activation_fn, weight):
        return ModelParallelRobertaLMHead(embed_dim, output_dim, activation_fn, weight)


@register_model_architecture("model_parallel_roberta", "model_parallel_roberta")
def base_architecture(args):
    args.no_final_layer_norm = getattr(args, "no_final_layer_norm", False)
    # model parallel RoBERTa defaults to "Pre-LN" formulation
    roberta_prenorm_architecture(args)


# earlier versions of model parallel RoBERTa removed the final layer norm
@register_model_architecture("model_parallel_roberta", "model_parallel_roberta_v1")
def model_parallel_roberta_v1_architecture(args):
    args.no_final_layer_norm = getattr(args, "no_final_layer_norm", True)
    base_architecture(args)


@register_model_architecture(
    "model_parallel_roberta", "model_parallel_roberta_postnorm"
)
def model_parallel_roberta_postnorm_architecture(args):
    # the original BERT/RoBERTa uses the "Post-LN" formulation
    roberta_base_architecture(args)


@register_model_architecture("model_parallel_roberta", "model_parallel_roberta_base")
def model_parallel_roberta_base_architecture(args):
    base_architecture(args)


@register_model_architecture("model_parallel_roberta", "model_parallel_roberta_large")
def model_parallel_roberta_large_architecture(args):
    args.encoder_layers = getattr(args, "encoder_layers", 24)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
    base_architecture(args)