File size: 16,891 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.iterative_refinement_generator import DecoderOut
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder
from fairseq.models.transformer import Embedding
from fairseq.modules.transformer_sentence_encoder import init_bert_params


def _mean_pooling(enc_feats, src_masks):
    # enc_feats: T x B x C
    # src_masks: B x T or None
    if src_masks is None:
        enc_feats = enc_feats.mean(0)
    else:
        src_masks = (~src_masks).transpose(0, 1).type_as(enc_feats)
        enc_feats = (
            (enc_feats / src_masks.sum(0)[None, :, None]) * src_masks[:, :, None]
        ).sum(0)
    return enc_feats


def _argmax(x, dim):
    return (x == x.max(dim, keepdim=True)[0]).type_as(x)


def _uniform_assignment(src_lens, trg_lens):
    max_trg_len = trg_lens.max()
    steps = (src_lens.float() - 1) / (trg_lens.float() - 1)  # step-size
    # max_trg_len
    index_t = utils.new_arange(trg_lens, max_trg_len).float()
    index_t = steps[:, None] * index_t[None, :]  # batch_size X max_trg_len
    index_t = torch.round(index_t).long().detach()
    return index_t


@register_model("nonautoregressive_transformer")
class NATransformerModel(FairseqNATModel):
    @property
    def allow_length_beam(self):
        return True

    @staticmethod
    def add_args(parser):
        FairseqNATModel.add_args(parser)

        # length prediction
        parser.add_argument(
            "--src-embedding-copy",
            action="store_true",
            help="copy encoder word embeddings as the initial input of the decoder",
        )
        parser.add_argument(
            "--pred-length-offset",
            action="store_true",
            help="predicting the length difference between the target and source sentences",
        )
        parser.add_argument(
            "--sg-length-pred",
            action="store_true",
            help="stop the gradients back-propagated from the length predictor",
        )
        parser.add_argument(
            "--length-loss-factor",
            type=float,
            help="weights on the length prediction loss",
        )

    @classmethod
    def build_decoder(cls, args, tgt_dict, embed_tokens):
        decoder = NATransformerDecoder(args, tgt_dict, embed_tokens)
        if getattr(args, "apply_bert_init", False):
            decoder.apply(init_bert_params)
        return decoder

    def forward(
        self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
    ):
        # encoding
        encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)

        # length prediction
        length_out = self.decoder.forward_length(
            normalize=False, encoder_out=encoder_out
        )
        length_tgt = self.decoder.forward_length_prediction(
            length_out, encoder_out, tgt_tokens
        )

        # decoding
        word_ins_out = self.decoder(
            normalize=False,
            prev_output_tokens=prev_output_tokens,
            encoder_out=encoder_out,
        )

        return {
            "word_ins": {
                "out": word_ins_out,
                "tgt": tgt_tokens,
                "mask": tgt_tokens.ne(self.pad),
                "ls": self.args.label_smoothing,
                "nll_loss": True,
            },
            "length": {
                "out": length_out,
                "tgt": length_tgt,
                "factor": self.decoder.length_loss_factor,
            },
        }

    def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs):
        step = decoder_out.step
        output_tokens = decoder_out.output_tokens
        output_scores = decoder_out.output_scores
        history = decoder_out.history

        # execute the decoder
        output_masks = output_tokens.ne(self.pad)
        _scores, _tokens = self.decoder(
            normalize=True,
            prev_output_tokens=output_tokens,
            encoder_out=encoder_out,
            step=step,
        ).max(-1)

        output_tokens.masked_scatter_(output_masks, _tokens[output_masks])
        output_scores.masked_scatter_(output_masks, _scores[output_masks])
        if history is not None:
            history.append(output_tokens.clone())

        return decoder_out._replace(
            output_tokens=output_tokens,
            output_scores=output_scores,
            attn=None,
            history=history,
        )

    def initialize_output_tokens(self, encoder_out, src_tokens):
        # length prediction
        length_tgt = self.decoder.forward_length_prediction(
            self.decoder.forward_length(normalize=True, encoder_out=encoder_out),
            encoder_out=encoder_out,
        )

        max_length = length_tgt.clamp_(min=2).max()
        idx_length = utils.new_arange(src_tokens, max_length)

        initial_output_tokens = src_tokens.new_zeros(
            src_tokens.size(0), max_length
        ).fill_(self.pad)
        initial_output_tokens.masked_fill_(
            idx_length[None, :] < length_tgt[:, None], self.unk
        )
        initial_output_tokens[:, 0] = self.bos
        initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos)

        initial_output_scores = initial_output_tokens.new_zeros(
            *initial_output_tokens.size()
        ).type_as(encoder_out["encoder_out"][0])

        return DecoderOut(
            output_tokens=initial_output_tokens,
            output_scores=initial_output_scores,
            attn=None,
            step=0,
            max_step=0,
            history=None,
        )

    def regenerate_length_beam(self, decoder_out, beam_size):
        output_tokens = decoder_out.output_tokens
        length_tgt = output_tokens.ne(self.pad).sum(1)
        length_tgt = (
            length_tgt[:, None]
            + utils.new_arange(length_tgt, 1, beam_size)
            - beam_size // 2
        )
        length_tgt = length_tgt.view(-1).clamp_(min=2)
        max_length = length_tgt.max()
        idx_length = utils.new_arange(length_tgt, max_length)

        initial_output_tokens = output_tokens.new_zeros(
            length_tgt.size(0), max_length
        ).fill_(self.pad)
        initial_output_tokens.masked_fill_(
            idx_length[None, :] < length_tgt[:, None], self.unk
        )
        initial_output_tokens[:, 0] = self.bos
        initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos)

        initial_output_scores = initial_output_tokens.new_zeros(
            *initial_output_tokens.size()
        ).type_as(decoder_out.output_scores)

        return decoder_out._replace(
            output_tokens=initial_output_tokens, output_scores=initial_output_scores
        )


class NATransformerDecoder(FairseqNATDecoder):
    def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
        super().__init__(
            args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn
        )
        self.dictionary = dictionary
        self.bos = dictionary.bos()
        self.unk = dictionary.unk()
        self.eos = dictionary.eos()

        self.encoder_embed_dim = args.encoder_embed_dim
        self.sg_length_pred = getattr(args, "sg_length_pred", False)
        self.pred_length_offset = getattr(args, "pred_length_offset", False)
        self.length_loss_factor = getattr(args, "length_loss_factor", 0.1)
        self.src_embedding_copy = getattr(args, "src_embedding_copy", False)
        self.embed_length = Embedding(256, self.encoder_embed_dim, None)

    @ensemble_decoder
    def forward(self, normalize, encoder_out, prev_output_tokens, step=0, **unused):
        features, _ = self.extract_features(
            prev_output_tokens,
            encoder_out=encoder_out,
            embedding_copy=(step == 0) & self.src_embedding_copy,
        )
        decoder_out = self.output_layer(features)
        return F.log_softmax(decoder_out, -1) if normalize else decoder_out

    @ensemble_decoder
    def forward_length(self, normalize, encoder_out):
        enc_feats = encoder_out["encoder_out"][0]  # T x B x C
        if len(encoder_out["encoder_padding_mask"]) > 0:
            src_masks = encoder_out["encoder_padding_mask"][0]  # B x T
        else:
            src_masks = None
        enc_feats = _mean_pooling(enc_feats, src_masks)
        if self.sg_length_pred:
            enc_feats = enc_feats.detach()
        length_out = F.linear(enc_feats, self.embed_length.weight)
        return F.log_softmax(length_out, -1) if normalize else length_out

    def extract_features(
        self,
        prev_output_tokens,
        encoder_out=None,
        early_exit=None,
        embedding_copy=False,
        **unused
    ):
        """
        Similar to *forward* but only return features.

        Inputs:
            prev_output_tokens: Tensor(B, T)
            encoder_out: a dictionary of hidden states and masks

        Returns:
            tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - a dictionary with any model-specific outputs
            the LevenshteinTransformer decoder has full-attention to all generated tokens
        """
        # embedding
        if embedding_copy:
            src_embd = encoder_out["encoder_embedding"][0]
            if len(encoder_out["encoder_padding_mask"]) > 0:
                src_mask = encoder_out["encoder_padding_mask"][0]
            else:
                src_mask = None
            src_mask = (
                ~src_mask
                if src_mask is not None
                else prev_output_tokens.new_ones(*src_embd.size()[:2]).bool()
            )

            x, decoder_padding_mask = self.forward_embedding(
                prev_output_tokens,
                self.forward_copying_source(
                    src_embd, src_mask, prev_output_tokens.ne(self.padding_idx)
                ),
            )

        else:

            x, decoder_padding_mask = self.forward_embedding(prev_output_tokens)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)
        attn = None
        inner_states = [x]

        # decoder layers
        for i, layer in enumerate(self.layers):

            # early exit from the decoder.
            if (early_exit is not None) and (i >= early_exit):
                break

            x, attn, _ = layer(
                x,
                encoder_out["encoder_out"][0]
                if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0)
                else None,
                encoder_out["encoder_padding_mask"][0]
                if (
                    encoder_out is not None
                    and len(encoder_out["encoder_padding_mask"]) > 0
                )
                else None,
                self_attn_mask=None,
                self_attn_padding_mask=decoder_padding_mask,
            )
            inner_states.append(x)

        if self.layer_norm:
            x = self.layer_norm(x)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        if self.project_out_dim is not None:
            x = self.project_out_dim(x)

        return x, {"attn": attn, "inner_states": inner_states}

    def forward_embedding(self, prev_output_tokens, states=None):
        # embed positions
        positions = (
            self.embed_positions(prev_output_tokens)
            if self.embed_positions is not None
            else None
        )

        # embed tokens and positions
        if states is None:
            x = self.embed_scale * self.embed_tokens(prev_output_tokens)
            if self.project_in_dim is not None:
                x = self.project_in_dim(x)
        else:
            x = states

        if positions is not None:
            x += positions
        x = self.dropout_module(x)
        decoder_padding_mask = prev_output_tokens.eq(self.padding_idx)
        return x, decoder_padding_mask

    def forward_copying_source(self, src_embeds, src_masks, tgt_masks):
        length_sources = src_masks.sum(1)
        length_targets = tgt_masks.sum(1)
        mapped_inputs = _uniform_assignment(length_sources, length_targets).masked_fill(
            ~tgt_masks, 0
        )
        copied_embedding = torch.gather(
            src_embeds,
            1,
            mapped_inputs.unsqueeze(-1).expand(
                *mapped_inputs.size(), src_embeds.size(-1)
            ),
        )
        return copied_embedding

    def forward_length_prediction(self, length_out, encoder_out, tgt_tokens=None):
        enc_feats = encoder_out["encoder_out"][0]  # T x B x C
        if len(encoder_out["encoder_padding_mask"]) > 0:
            src_masks = encoder_out["encoder_padding_mask"][0]  # B x T
        else:
            src_masks = None
        if self.pred_length_offset:
            if src_masks is None:
                src_lengs = enc_feats.new_ones(enc_feats.size(1)).fill_(
                    enc_feats.size(0)
                )
            else:
                src_lengs = (~src_masks).transpose(0, 1).type_as(enc_feats).sum(0)
            src_lengs = src_lengs.long()

        if tgt_tokens is not None:
            # obtain the length target
            tgt_lengs = tgt_tokens.ne(self.padding_idx).sum(1).long()
            if self.pred_length_offset:
                length_tgt = tgt_lengs - src_lengs + 128
            else:
                length_tgt = tgt_lengs
            length_tgt = length_tgt.clamp(min=0, max=255)

        else:
            # predict the length target (greedy for now)
            # TODO: implementing length-beam
            pred_lengs = length_out.max(-1)[1]
            if self.pred_length_offset:
                length_tgt = pred_lengs - 128 + src_lengs
            else:
                length_tgt = pred_lengs

        return length_tgt


@register_model_architecture(
    "nonautoregressive_transformer", "nonautoregressive_transformer"
)
def base_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.apply_bert_init = getattr(args, "apply_bert_init", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    # --- special arguments ---
    args.sg_length_pred = getattr(args, "sg_length_pred", False)
    args.pred_length_offset = getattr(args, "pred_length_offset", False)
    args.length_loss_factor = getattr(args, "length_loss_factor", 0.1)
    args.src_embedding_copy = getattr(args, "src_embedding_copy", False)


@register_model_architecture(
    "nonautoregressive_transformer", "nonautoregressive_transformer_wmt_en_de"
)
def nonautoregressive_transformer_wmt_en_de(args):
    base_architecture(args)